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Abstract We introduce a machine-personnel assignment problem where personnel must be trained to operate
certain groups of machines, whereas others can also be operated by interim workers hired at an additional cost.
In order to achieve a feasible or a minimum-cost assignment for long-term planning, it may be necessary to
cross-train employees on di�erent machines. However, this requires switching to di�erent machines frequently,
which is not desirable for personnel. Therefore, each switch incurs a penalty cost. This speci�c characteristic
makes the problem unique and complex when compared to well-known related problems in the literature. The
problem requires assigning each machine to a minimum number of operators for each day of a given planning
horizon while minimizing the total cost of hiring interim workers and switching machines. We provide integer
programming formulations of the problem and develop an iterated local search method to solve instances with
longer planning horizons. A comparison of the introduced methods on randomly generated instances indicate
that the iterated local search algorithm is capable of �nding high quality solutions within a reasonable time
limit.

Keywords Cross-training · Sta� assignment · Integer programming · Iterated local search

1 Introduction

The new problem studied in this paper, which we refer to as the machine-personnel assignment problem with

training and interim worker requirements (MPATI), is motivated by a real-world application from the food
and drink industry. Although we were introduced to this problem by a company operating in this speci�c
sector, it is likely that similar applications exist in other sectors involving production or process optimization
with possibilities of personnel training and hiring interim workers.

The MPATI deals with a division within the company which contains a �xed number of machines to be
operated on a daily basis and permanent workers (personnel) whose shifts and working days in the planning
horizon are predetermined. Although the majority of the machines must be operated only by personnel and
under the supervision of a quali�ed worker, it is possible, and sometimes necessary, to hire interim workers
to operate the others. Each machine requires a minimum number of operators (personnel or interim workers)
assigned to every day, while an operator can only work on exactly one machine within a working day.

At the beginning of the planning horizon, only a subset of the workers is quali�ed to supervise or operate
each machine independently. The set of quali�ed workers is not necessarily identical for di�erent machines
and, therefore, a worker quali�ed on one machine might be unquali�ed for another. Certain groups of workers
may obtain the necessary quali�cation to operate certain machines after a training period. Training is possible
only under the supervision of a quali�ed employee dedicated to work on those machines during the training
days. In order to preserve their quali�cation, workers must avoid not operating the same machine for too
many consecutive days. Otherwise, they lose their quali�cation and must undertake a short training period
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which requires working on that machine under the supervision of a quali�ed person. Assigning workers to
the same machines every day implies having only single-skilled personnel, which can result in infeasibilities
in the long term. On the other hand, workers generally prefer not to switch machines frequently, given its
additional adjusment period required. Therefore, a penalty is incurred every day a worker changes their
machine assignment.

Learning and forgetting e�ects have been well-studied in scheduling problems. In these problems, job
processing times are a�ected by the number of times a resource has performed a certain job [1,2]. The impact
of these e�ects has been analyzed on the performance of both the system as a whole and individual workers
[3,8,9].

Given the aforementioned restrictions, the MPATI requires a schedule which assigns workers to machines
for each day of the planning horizon such that the total cost of hiring interim workers and the penalty cost
of switching machines is minimized.

There are numerous examples of practical applications in the literature in which an accurate representation
of employee skills is essential [5]. While there exist many papers on sta� scheduling with �xed skills [10],
the problem setting considered in this paper is rather uncommon due to the presence of decisions concerning
employee cross-training. In one of the few related studies, Wirojanagud et al. [11] use an integer programming
model to decide when to hire, �re or cross-train employees to minimize the costs incurred by production
losses and training. In contrast to our problem setting, decisions are made at an aggregate level, without
considering individual workers who may have varying preferences. De Bruecker et al. [4] propose a three-
phase integer programming approach for optimizing the shift and training schedule of aircraft maintenance
workers. Emphasis is placed on �nding the optimal trade-o� between low-cost schedules that require highly
cross-trained workers and the training costs required to establish such a workforce. The impact of long-term
sta�ng decisions has been studied by Komarudin et al. [7] who introduce a methodology for evaluating the
e�ect on operational costs associated with sta� allocation when exists multiple skills among the workforce
being scheduled. For a comprehensive review of sta� scheduling and personnel rostering literature, we refer
to [6].

Our contribution in this paper is threefold. First, we introduce a new, relevant machine-personnel assign-
ment problem combined with disaggregated cross-training and interim worker hiring decisions which have
never been considered in the literature. Second, we provide mathematical formulations of this newly intro-
duced problem with several valid inequalities. Third, we present a heuristic method which produces very high
quality solutions within the imposed time limit.

The remainder of the paper is organized as follows: Section 2 formally describes the problem with an
integer programming (IP) formulation. This section also introduces a mixed integer programming (MIP)
variant of this IP and several valid inequalities obtained by exploiting practical properties of the problem.
Section 3 provides an Iterated Local Search (ILS) algorithm for solving the MPATI. The performance of
both mathematical models and the heuristic algorithm are then evaluated on randomly generated instances
in Section 4. Finally, we conclude and o�er directions for future research in Section 5.

2 Problem formulation

Given a set of workers P working the same shift of a process unit in a factory or a company, the problem
consists of operating a set of machines M during a planning horizon denoted by a set of days D. While a
subset MN of machines M can only be operated by workers in P , the remaining set M −MN = M I of
machines can also be operated by interim workers who must be hired at additional cost f per person per day.
Each machine m ∈M requires a minimum number of operators nmd on day d ∈ D.

At the beginning of the planning horizon, not every worker is quali�ed to independently operate every
machine. This information is available via a skill matrix S = [spm] where spm = 1 if worker p ∈ P is quali�ed
to operate machine m ∈ M without supervision and spm = 0 otherwise. A worker p ∈ P can undergo a
training period of lpm days (not necessarily consecutive) to become quali�ed to operate machine m ∈ M
without supervision. While trainees are considered as operating workers, they can only be trained on a
machine if there is a quali�ed worker assigned to the same machine on the same day. A worker p ∈ P must be
assigned to exactly one machine on each working day d ∈ Dp where Dp ⊆ D is the set of days that worker p
is available. Worker p who is not assigned to a machine for Cp consecutive working days of Dp must undergo
a short retraining of Rp days (not necessarily consecutive) on that machine to reacquire their quali�cation.
We refer to Cp as `skill memory' throughout the remainder of the paper.

Although working on di�erent machines on di�erent days might be inevitable for workers, it is undesirable
and therefore a penalty cost π is incurred per machine switch per worker. The objective is to �nd a machine-
worker assignment for the entire planning horizon while minimizing the total cost of hiring interim workers
and switching penalties.
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In order to formulate this problem as an IP model, we de�ne the following additional parameters:

e0p: the index of the �rst working day of worker p.
edpk: the index of the k-th previous working day of worker p for day d ∈ Dp.
hpm: the number of consecutive working days worker p ∈ P has not been working on machine m ∈M .
tpm: the number of training days of worker p ∈ P on machine m ∈M .

Moreover, we introduce the following decision variables:

xpmd = 1 if worker p ∈ P is assigned to machine m ∈M on day d ∈ D, 0 otherwise.
γpmd = 1 if worker p ∈ P is quali�ed to work on machine m ∈M on day d ∈ D, 0 otherwise.
wpmd = 1 if worker p ∈ P is quali�ed and working on machine m ∈M on day d ∈ D, 0 otherwise.
αpmd = 1 if worker p ∈ P lost their quali�cation for machine m ∈M on day d ∈ D, 0 otherwise.
τpmd = 1 if worker p ∈ P is being trained on machine m ∈M on day d ∈ D, 0 otherwise.
ypd = 1 if worker p ∈ P switches to a di�erent machine on day d ∈ D, 0 otherwise.
zmd: the number of interim workers assigned to machine m ∈M on day d ∈ D.

The following is an IP formulation for the MPATI.

(IP ) min
∑

m∈MI

∑
d∈D

fzmd +
∑
p∈P

∑
d∈Dp

πypd (1)

s.t.
∑
m∈M

xpmd = 1, ∀p ∈ P, d ∈ Dp, (2)

wpmd + τpmd = xpmd, ∀p ∈ P,m ∈M,d ∈ Dp, (3)∑
p∈P :d∈Dp

xpmd ≥ nmd, ∀m ∈MN , d ∈ D, (4)

zmd +
∑

p∈P :d∈Dp

xpmd ≥ nmd, ∀m ∈M I , d ∈ D, (5)

τpmd ≤
∑

q∈P :d∈Dq

wqmd, ∀p ∈ P,m ∈M,d ∈ Dp, (6)

xpmd − xpmedp1 ≤ ypd, ∀p ∈ P,m ∈M,d ∈ Dp, (7)

xpmedp1 − xpmd ≤ ypd, ∀p ∈ P,m ∈M,d ∈ Dp, (8)

wpmd ≤ γpmd, ∀p ∈ P,m ∈M,d ∈ Dp, (9)

γpme0p ≤ spm, ∀p ∈ P,m ∈M, (10)

γpmd ≤
Cp−hpm∑

k=1

xpmedpk , ∀p ∈ P,m ∈M,d ∈ Dp : edp(Cp−hpm) = 0, (11)

γpmd ≤
Cp∑
k=1

xpmedpk , ∀p ∈ P,m ∈M,d ∈ Dp : edpCp ≥ 0, (12)

d∑
j=0:j∈Dp

τpmj ≥ (lpm − tpm)γpmd, ∀p ∈ P,m ∈M,d ∈ Dp : spm = 0, (13)

γpmedp1 − γpmd ≤ αpmd, ∀p ∈ P,m ∈M,d ∈ Dp, (14)

d∑
j=i:j∈Dp

τpmj ≥ Rpγpmd +Rp(αpmi − 1), ∀p ∈ P,m ∈M,d, i ∈ Dp : i ≤ edpRp , (15)

xpmd, γpmd, wpmd, αpmd, τpmd ∈ {0, 1}, ∀p ∈ P,m ∈M,d ∈ Dp, (16)

ypd ∈ {0, 1} ∀p ∈ P, d ∈ Dp, (17)

zmd ∈ {0} ∪ Z+ ∀m ∈M,d ∈ D. (18)

Objective function (1) minimizes the total cost of hiring interim workers and switching machines. Con-
straints (2) assign a machine to each worker on each of their working days, while Constraints (3) make sure
that this worker is either training or quali�ed (but not both) for that machine on that day. Constraints (4) and
(5) assign a su�cient number of operators to each machine for each day. Constraints (6) ensure that trainees
are assigned to a machine only if a quali�ed worker is also assigned to the same machine. For each working
day of each worker, Constraints (7) and (8) introduce a switch to be penalized in the objective function if on
this day this worker works on a di�erent machine than the one they worked on their previous working day.
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Constraints (9) forbid a worker to work on a machine without supervision unless they are quali�ed for that
machine on that working day. Constraints (10) indicate whether or not a worker is quali�ed to work on a
machine independently on their �rst working day. Constraints (11) and (12) restrict the number of consecu-
tive working days that a quali�ed worker can avoid working on a given machine and yet remain quali�ed for
it. Constraints (13) ensure that a worker obtains the quali�cation to work on a machine without supervision
only after su�cient training. The minimum number of required training days for this �rst quali�cation varies
among workers and depends on their training level at the beginning of the planning horizon. By Constraints
(14), each day a worker loses their quali�cation on a machine is captured and Constraints (15) ensure that
upon losing the quali�cation this worker can become quali�ed on this machine again only after receiving the
short retraining. Finally, Constraints (16)-(18) are binary and integer restrictions.

Note that the integer restrictions on y variables can be relaxed as the right hand sides of (7) and (8)
are always integral and the coe�cients of these variables are nonnegative in the minimization-type objective
function. Given that nmd values are integer, a similar reasoning allows us to also relax the integrality restric-
tions on z variables as well, leading to an MIP variant. Additionally, the requirements satis�ed by Constraints
(4) and (5) can also be expressed as in Constraints (19) and (20), respectively, since an assigned personnel is
either a trainee or a quali�ed worker. Utilizing (19) and (20) further enables replacing equality (3) with an
inequality as in (21).

∑
p∈P :d∈Dp

wpmd +
∑

p∈P :d∈Dp

τpmd ≥ nmd, ∀m ∈MN , d ∈ D, (19)

zmd +
∑

p∈P :d∈Dp

wpmd +
∑

p∈P :d∈Dp

τpmd ≥ nmd, ∀m ∈M I , d ∈ D, (20)

wpmd + τpmd ≤ xpmd, ∀p ∈ P,m ∈M,d ∈ Dp, (21)

These modi�cations lead us to the following MIP for the EMPATI:

(MIP ) min (1)

s.t. (2), (6)− (16), (19)− (21)

0 ≤ ypd ≤ 1 ∀p ∈ P, d ∈ Dp, (22)

zmd ≥ 0 ∀m ∈M,d ∈ D. (23)

We obtain several valid inequalities by further analyzing the problem characteristics. These inequalities
can be classi�ed into two groups. The �rst group ensures that the binary variables corresponding to the
following decision pairs cannot cannot take value one at the same time for a worker-machine combination:

Pair 1: lose quali�cation and be quali�ed on the same day (24)
Pair 2: lose quali�cation and work as a quali�ed worker on the same day (25)
Pair 3: lose quali�cation on a day and work on the previous day (26), (27)

αpmd + γpmd ≤ 1, ∀p ∈ P,m ∈M,d ∈ Dp, (24)

αpmd + wpmd ≤ 1, ∀p ∈ P,m ∈M,d ∈ Dp, (25)

αpmd + τpmedp1 + wpmedp1 ≤ 1, ∀p ∈ P,m ∈M,d ∈ Dp, (26)

αpmd + xpmedp1 ≤ 1, ∀p ∈ P,m ∈M,d ∈ Dp. (27)

Similarly, the second group ensures that the binary variables corresponding to the following decision pairs
cannot take value one at the same time for a worker-machine combination:

Pair 1: train and be quali�ed on the same day (28)
Pair 2: train on a day and be quali�ed on the previous day (29)
Pair 3: train on a day and work as a quali�ed worker on the previous day (30)

τpmd + γpmd ≤ 1, ∀p ∈ P,m ∈M,d ∈ Dp, (28)

τpmd + γpmedp1 ≤ 1, ∀p ∈ P,m ∈M,d ∈ Dp, (29)

τpmd + wpmedp1 ≤ 1, ∀p ∈ P,m ∈M,d ∈ Dp. (30)
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3 Iterated local search

The MPATI is typically solved for a planning horizon of multiple months as the required training for a
worker to qualify for a new machine typically takes several weeks. Preliminary experiments have shown that
while integer programming may be used to �nd solutions when considering planning horizons of a few weeks,
large-scale problems cannot be solved with available solvers. To address these problem instances, an Iterated
Local Search (ILS) algorithm is introduced. Algorithm 1 outlines the main components of the proposed ILS,
where S0 is the initial solution and f(S) is an evaluation function which returns the cost of solution S.

Algorithm 1: Iterated local search

Data: S0, f(S)
Result: S

1 S ← localSearch(S0);
2 while time limit not exceeded do

3 S′ ← perturb(S);
4 S′ ← localSearch(S′);
5 if f(S′) ≤ f(S) then
6 S ← S′;

7 return S;

To obtain an initial solution S0, a constructive heuristic �rst assigns one quali�ed worker to each machine
in MN . Then, randomly selected workers who are available are assigned until the minimum number of
operators nmd is reached. Finally, any workers still available are assigned to the machines in M I . These steps
are repeated for each day in the planning horizon.

3.1 Solution representation

The proposed ILS operates on a direct solution representation consisting of a two dimensional matrix S =
(P ×D) whose values correspond to the machine assigned to worker p ∈ P on day d ∈ D. To avoid feasibility
issues, two hard constraints are relaxed during the search: machine sta�ng requirements (Constraints (4) and
(5)) and trainee supervision (Constraints (6)). Violations of these constraints are penalized in the evaluation
function f(S). Possible compensation between the constraint penalties and the problem's real objective
function (Equation (1)) is avoided by using a two-level lexicographic evaluation function. The �rst level sums
all violations of the relaxed hard constraints while the second corresponds to the problem's original weighted
sum function objective.

To identify violations of the trainee supervision constraint, an auxiliary datastructure is employed which
maintains a training label Tpmd = (l, c, δ, s) for each worker p ∈ P , machine m ∈ MN and day d ∈ D. The
label indicates the current skill level l ∈ {none, trainee, quali�ed}, the number of days c the worker has been
level l, the previous day δ the worker was assigned to machine m and a boolean s which indicates whether
or not the worker is eligible for a short retraining on this machine. Algorithm 2 sets the training labels for
worker p on machine m from day d′ onwards. The procedure updateWorking() adjusts the training label on
day d after working an additional day on the machine. It is possible for a worker to transition from trainee to
quali�ed if the required number of training days is reached. However, if the last time the worker was assigned
to the machine was too long ago, that is, d−δ > Cp, it is also possible to transition back to the trainee status.
Similarly, updateIdle() sets the training label on day d when the worker is not assigned to the machine. All
transitions are possible in this case, even to the none status when considering the situation where a worker
was previously quali�ed but has lost it on this day.

Algorithm 2: Setting training labels

Data: p, m, d′

1 foreach d ∈ D : d ≥ d′ do
2 if S(p, d) = m then

3 Tpmd ← updateWorking();
4 else

5 Tpmd ← updateIdle();

As Algorithm 2 only updates the training labels from day d′ onwards, delta evaluation of the trainee
supervision constraint is straightforward to implement. Similarly, identifying violations of Constraints (4)
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and (5) and calculating the problem's real objective may be accelerated by only re-calculating the parts of
the solution which have been changed.

3.2 Local search and perturbation

The main drivers of ILS' performance are the local search and perturbation procedures. In the local search
performed at lines 1 and 4 in Algorithm 1, two parametrized neighborhood structures are used:

� change(k): assigns a worker to a machine for k consecutive days on which the worker is available,
� swap(k): swaps the assigned machines of two workers for k consecutive days on which these workers are
available.

The local search procedure is instantiated with two variants of each neighborhood structure: one in which k
is randomly chosen in each iteration from the interval [1, 30] and another with k = 1. Rather than performing
a full neighborhood search in each iteration, one new solution is randomly sampled and evaluated.

The perturbation procedure at line 3 in Algorithm 1 is used to escape from local optima reached by the
local search procedure. This is achieved through a random walk of γ steps in the change(k) and swap(k)
neighborhoods. Based on preliminary experiments, this parameter was set to γ = 100.

4 Computational study

In order to evaluate the performance of our methods under di�erent planning settings, we randomly generated
�ve sets of instances based on the real data provided by the company. In all instances, the interim cost f = 264,
the switching cost π = 60, the number of workers |P | = 40 and the number of machines |M | = 15. Only
three of these machines can be operated by interim workers, that is, |M I | = 3. Each instance set corresponds
to a �xed-length planning horizon, as shown in Table 1. For all instances in the same set, the number of
days required for training is identical for all machine-personnel pairs, that is, lpm = λ for all m ∈ M and
p ∈ P . However, not every worker can be trained on a machine; this 0-1 (binary) parameter value is chosen
randomly and may vary among instances of the same set. Similar to training, Cp = C and Rp = R, ∀p ∈ P
in all instances of the same set. In addition to |D|, Table 1 reports the l, C and R values for each instance
set.

Table 1 Planning horizon, training, skill memory and short retraining lengths (in days) for each instance set.

Horizon Training Skill memory Short training
Instance set |D| λ C R

1 5 1 ∞ 0
2 10 2 5 1
3 20 4 10 2
4 60 12 20 3
5 260 60 20 3

Each set contains four instances which can be subdivided into two groups. For each group, a unique
combination of random data generation probabilities is employed. These probability combinations imply that
workers in the �rst group have fewer skills and less past training (yet to get the quali�cation) than those
in the second group at the beginning of the planning horizon. Moreover, in the long run, for the �rst group
fewer machines are available and a higher number of workers are needed.

We implement all mathematical models and the ILS algorithm in Java and use CPLEX 12.8 to solve the
mathematical formulations. The experiments are run on a cluster of Intel Xeon CPU E5-2860 @2.50GHz with
24 cores and 64GB of RAM. The time limit for each run is set to �ve hours for each method. At most four
threads are allowed for CPLEX runs. The ILS is run ten times per instance with di�erent seed values for the
algorithm's random number generator.

The �rst column of all the remaining tables in this section provides the instance code in format `#1_#2'
where #1 = |D| indicates the length of the planning horizon and #2 is a unique identi�er to associate the
instance with the aforementioned groups and seeds. More speci�cally, instances with #2 = 1, 2 belong to the
�rst group while those with #2 = 3, 4 belong to the second group. Columns `Obj' provide the value of the
solution obtained from the corresponding method whereas `g%' indicates the gaps reported by CPLEX at
the end of the time limit.
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Table 2 Comparison of mathematical models with and without valid inequalities

IP MIP IP + (24)-(30) MIP + (24)-(30)

Inst. Best Obj Obj g% Obj g% Obj g% Obj g%

5_1 360 360 73.3 360 73.3 360 72.8 360 73.3
5_2 120 120 65.6 120 50.0 120 50.0 120 50.0

5_3 10044 10044 1.8 10044 1.8 10044 2.7 10044 1.2

5_4 8952 8952 6.0 8952 5.4 8952 4.7 8952 6.0

Avg. 4869.0 4869.0 36.7 4869.0 32.6 4869.0 32.5 4869.0 32.6

10_1 540 540 65.4 540 67.3 540 67.3 540 67.3
10_2 360 360 68.6 360 70.1 420 74.4 420 74.4
10_3 16344 16344 17.3 16644 18.8 16344 17.3 18084 25.2
10_4 12972 12972 22.2 12972 21.7 12972 22.7 12972 22.2

Avg. 7554.0 7554.0 43.4 7629.0 44.5 7569.0 45.4 8004.0 47.3

20_1 13044 13044 94.8 27912 97.6 41556 98.4 40152 98.3
20_2 12384 14700 96.7 34608 98.6 12384 96.1 44640 98.9
20_3 54084 54084 45.2 - - - - - -
20_4 47292 47292 39.8 60108 52.7 54120 47.4 54120 47.4

Avg. 31701.0 32280.0 69.1 40876.0 83.0 36020.0 80.6 46304.0 81.6

Avg. 14708.0 14901.0 49.7 15692.7 50.7 14346.5 50.3 17309.5 51.3

Table 2 provides the results obtained from the two mathematical formulations with and without the valid
inequalities presented in Section 2. These models are not tested on instances with a planning horizon longer
than 20 days as they are too large for CPLEX to handle. The best solution value obtained among the four
models is reported under column `Best Obj'. Although the MIP combinations terminate with a smaller dual
gap for some instances, the IP provides the best gaps on average and the best solution values in all but one
instance where the IP with the valid inequalities produces the best solution. We also observe that the gaps
are larger for instances from the �rst group in each set.

Table 3 Comparing the ILS solution values with the best IP/MIP results

Best IP/MIP ILS

Inst. Best Obj Obj LB Min Obj Max Obj Avg. Obj

5_1 360 360 97.9 360 360 360.0

5_2 120 120 60.0 120 120 120.0

5_3 10044 10044 9923.0 10044 10044 10044.0

5_4 8952 8952 8532.0 8952 8952 8952.0

Avg. 4869.0 4869.0 4653.2 4869.0 4869.0 4869.0

10_1 540 540 186.0 540 540 540.0

10_2 360 360 112.9 360 360 360.0

10_3 16344 16344 13524.0 16344 16344 16344.0

10_4 12972 12972 10152.0 12972 12972 12972.0

Avg. 7554.0 7554.0 5993.7 7554.0 7554.0 7554.0

20_1 1980 13044 681.9 1980 2040 2028.0
20_2 1800 12384 488.0 1800 1920 1890.0
20_3 35844 54084 29664.0 35844 35844 35844.0

20_4 37212 47292 28452.0 37212 37212 37212.0

Avg. 19209.0 31701.0 14821.5 19209.0 19254.0 19243.5

Avg. 10544.0 14708.0 8489.5 10544.0 10559.0 10555.5

In Table 3, we compare the solution values of the ILS with the best upper and lower bound values obtained
from the mathematical formulations. The column `Best Obj' reports the best solution value obtained from
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the four mathematical models and the ten runs of the ILS. The last three columns of this table provide the
minimum, maximum and the average solution values from the ten runs of the ILS for each instance. The
ILS is able to �nd a solution with the same objective value as the best model solution in all instances with
|D| = 5, 10, and for the instances with |D| = 20 it provides a better solution than the best obtained by the
formulations. Although the solution values may seem far from the lower bound values, by introducing the
ILS solutions to CPLEX via a warm start function (addMIPStart) we are able to con�rm that the heuristic
solutions are in fact optimal for the instances with |D| = 5. Therefore, it is likely that the solutions provided
by the ILS for larger instances are also optimal or near-optimal.

Table 4 Detailed results for all instances solved by the ILS approach

ILS

Obj Average number of

Inst. Min Max Avg, Std. Switches Interims

5_1 360 360 360 0.00 6 0
5_2 120 120 120 0.00 2 0
5_3 10044 10044 10044 0.00 53 26
5_4 8952 8952 8952 0.00 48 23

10_1 540 540 540 0.00 9 0
10_2 360 360 360 0.00 6 0
10_3 16344 16344 16344 0.00 92 41
10_4 12972 12972 12972 0.00 93 28

20_1 1980 2040 2028 25.30 33.8 0
20_2 1800 1920 1890 42.43 31.5 0
20_3 35844 35844 35844 0.00 197 91
20_4 37212 37212 37212 0.00 233 88

60_1 7260 7560 7416 117.30 123.6 0
60_2 4500 4800 4644 110.27 77.4 0
60_3 109800 109800 109800 0.00 664 265
60_4 108192 108192 108192 0.00 646 263

260_1 37008 39828 38136 945.64 626.8 2
260_2 28680 30480 29730 476.03 495.5 0
260_3 471396 471516 471450 52.54 2823.9 1144
260_4 482040 482220 482112 61.97 2909.2 1165

Table 4 presents the detailed results obtained from the ILS when solving all instances. In addition to the
minimum, maximum and average, this table also provides the standard deviation of the solution values of
the ten runs in the �fth column. The solution values of the ten runs are identical for 60% of the instances.
The average standard deviation across all instances is 112.3. The last two columns of this table provide the
average number of switches and interim workers hired. We observe that the solutions for the �rst group of
instances have fewer switches and interim workers compared to the second group. Although it is costly, it is
worth noting that switching machines is unavoidable in order to obtain a feasible solution in these instances.

5 Conclusion

This paper addressed a new sta� assignment problem where daily personnel requirements of di�erent skills
may vary over the planning horizon. This suggests varying duty assignments for the personnel which may
eventually lead to losing skills if not used for too long. It is possible to train or retrain for di�erent skills,
however, these training decisions result in a very challenging problem for which even �nding a feasible solution
necessitates a signi�cant amount of computational e�ort. Another challenging component penalizes switching
duties as it requires an additional adjustment period and is undesirable by personnel. Together with the
decisions concerning the number of interim workers to hire on a daily basis, reaching high quality solutions
in a reasonable amount of time is only possible via tailored methods.

We introduced integer and mixed integer programming formulations with several valid inequalities. In
our experiments, these formulations reached high quality solutions within a reasonable amount of time for
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Machine-personnel assignment with training and interim worker requirements

problems with short planning horizons. However, they were unable to handle problems with long planning
horizons with the commercial solver that was utilized. The solver also had di�culties in closing the dual
gap, especially, for the �rst group of instances where the employees have fewer skills and less training at the
beginning of the planning horizon. This motivated the development of an iterated local search algorithm to
solve larger problem instances, which produced high quality solutions when solving the instances generated.

An interesting extension to the problem could be to include shift rostering as an additional decision as this
would enable grouping operators with complementary skills in addition to cross-training them. Alternatively,
the problem could be extended to enable training of the interim workers so that they can be allocated to the
machines which require more complicated skills, more speci�cally, the non-interim machines. From a method-
ological perspective, it is worthwhile investigating the structural properties of the proposed mathematical
models for developing possibly competitive matheuristic approaches.
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Abstract 

This research is concerned with new metrics we suggest for measuring employee well-being to be included in 

personnel scheduling. The well-being of employees has attracted the interest of researchers mostly in the field of 

Occupational Medicine, over the past decade. The aim of this paper is to bring the issue of employee well-being 

to the Timetabling community. We provide an overview of well-being literature followed by a description of the 

well-being measures that we propose to be included in the objective function while generating a roster. These 

measures include work-life balance measures, Fatigue and Risk indices, and compliance with Health and Safety 

Executive (HSE) guidelines. As an experimental environment, we use three case studies of personnel scheduling, 

which are of very different nature: scheduling of fixed shift patterns, nurse rostering and cyclic scheduling of 

flexible shifts in a call-centre service industry. Our aim is to investigate to what extent employee well-being can 

be improved while maintaining high performance of rosters. We analyse and compare proposed rosters generated 

manually and by computerised algorithms, with and without well-being measures.  

Key words: personnel scheduling, well-being measures, fatigue, case studies 

1. Introduction

Personnel scheduling has been a subject of interest within both Operational Research and Artificial 

Intelligence research communities for a number of decades. It can be stated as an assignment problem 

in which personnel are assigned to shifts to cover the demand for resources that varies over time (Ernst 

et al. 2004b). The assignment is subject to given rules/constraints, which are used to apply restrictions 

to the timetable. These are usually divided into two categories: "hard" restrictions which are rigidly 

enforced and "soft" restrictions whose satisfaction is desirable but not essential because it is often 

difficult or impossible to satisfy all of them. In general, the level of satisfaction with the soft constraints 

in a generated timetable determines its quality. Usually, workforce planning/staffing, which deals with 

strategic decisions related to the optimal size or mix of a workforce, precedes timetabling, i.e. in 

timetabling it is assumed that staffing levels are given. Also, in each time period of the rostering horizon 

the demand is calculated and serves as input to timetabling. In practice, personnel scheduling problems 

can be very hard to solve, and their manual solution requires much effort. 
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 Separately from these research efforts, there is increasing research into well-being of employees 

related to work, but mostly reported in the field of occupational medicine. In the literature review of the 

effect of employee well-being on their work, it was stated that employees high in well-being are 

generally more productive at work, have higher incomes, and have better physical and mental health 

(Jeffrey et al, 2014). There is evidence that improving employee well-being improves organisational 

outcomes and also has impact on sickness absence, presenteeism, employee engagement, retention and 

performance (Donald et al, 2005). This particularly applies to tasks that require vigilance and 

monitoring, decision making, awareness, fast reaction time, tracking ability, and/or memory. Generally, 

personnel scheduling methods do not measure employee well-being in any formal or objective way, 

apart from imposing some constraints, hard or soft, to reflect the EU Working Time Directive (2003), 

restrictions on night shifts, etc. The aim of this paper is to bring the research into well-being of 

employees related to work to the attention of the timetabling community. The paper is organised as 

follows. First a literature review of main findings about well-being at work is given, followed by a 

description of the proposed measures for employee well-being. We report our insights into these 

measures and their effect on the performance of the rosters based on three case studies.  

2. Literature review on well-being at work

We group the papers into different categories based on aspects of employee well-being they investigate. 

The categories and the selection of relevant papers are presented in Table 1.  

There is a large number of papers that report on the effects of well-being on organisational 

outcomes, such as productivity, absenteeism, retention, etc. An extensive piece of research was carried 

out by Donald et al. (2005), which involved 15 different organisations in the public and private sectors 

in the UK spanning a range of occupations, from professional to administrative and manual roles. Young 

and Bhaumik, (2011) carried out a Health and Well-being Employee Survey for Department for Work 

and Pensions in the UK. The conclusions were that better psychological well-being resulted in higher 

employee productivity; there was an association between high employee engagement, positive views 

about work life balance and high employee retention/low sickness absence. Factors that affect the job 

performance, retention and sickness absence were investigated by Zedeck et al (1983), Diener and 

Seligman (2004), and others. Warr and Nielsen (2018) discussed different types of context-free and job-

related well-being, and reviewed research into association between well-being and work performance 

through specific factors such as being creative or proactive at work.  

Many employees work alternating shifts, which usually last between 6 to 12 hours (Harrington, 

2001). The traditional three 8-hour shifts start at 06:00, 14:00, and 22:00 hours. However, there are 

many variations of shifts and employees can rotate through different shifts with variable degrees of 

speed of rotation and direction of rotation. A summary of effects of shift work on health and safety 
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reported by Harrington (2001) initiated other research into design of work schedule (see for example, 

(Folkard et al, 2005, Muecke, 2005, Fransen et al, 2006, Lowdan et al, 2010, Kubo et al, 2011, 

Schernhammer et al, 2011; Ferri et al 2016; Gärtner et al, 2019, etc.). 

Table 1. Selection of the literature on well-being at work 

Topic of the research Publications 

Effects of well-being on organisational outcomes (Zedeck et al, 1983), (Diener and Seligman, 

2004), (Donald et al, 2005), (Young and 

Bhaumik, 2011), (Warr and Nielsen, 2018),  

Effects of shift work on health and safety (Folkard et al, 2005), (Muecke, 2005), (Fransen 

et al, 2006), (Lowdan et al, 2010), (Kubo et al, 

2011), (Schernhammer et al, 2011), (Gärtner at 

al, 2019) 

Giving staff control over their shift patterns (Ala-Mursula et al 2006), (Ingre et al 2012) 

Effect of overtime work on hazard rate and health (Smith et al, 1998), (Dembe et al, 2005), (Bell, 

2012), (Wong et al, 2019) 

Different shift lengths (Cunningham, 1982), (Northrup, 1989), (Tucker 

et al, 1996), (Ellis, 2008)  

Rest days (Tucker et al, 1999), (Flo et al, 2014) 

Delaying shift start and end times (Rosa et al, 1996) 

Forward-rotating schedules vs backward-

rotating schedules 

(Barton et al, 1994), De Leede and McCarrick 

(2011)  

Comparison of fixed shifts to rotating shifts (Martens et al, 1999), (Fereshteh et al, 2011) 

Regular work more than 48 hours a week (Spurgeon et al, 1997) 

Night shift (Khaleque, 1999), (Gander et al, 2007), (Ferri et 

al, 2016) 

Comparison of different shift patterns (Baxter and Mosby, 1988) 

 The positive effects of giving employees control over their shift patterns, so-called self-rostering, 

were reported by Ala-Mursula et al (2006), Ingre et al (2012), etc.  

 A number of papers quantified the effect of overtime work on hazard rate and health. Dembe et 

al (2005) found that working in jobs with overtime schedules was associated with a 61% higher injury 

rate compared to jobs without overtime. In line with that, working at least 12 hours per day and at least 

60 hours per week was associated with a 37% and 23% increased hazard rate. Smith et al (1994) 

investigated the risk of injury at an engineering firm and found that it was 20% higher for staff on night 

shifts than for those on day shifts. Additional research on this topic includes (Bell, 2012) and (Wong et 

al, 2019).  
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 Particular attention was paid to the research into the effect on well-being of different shift patterns, 

timings, lengths and distribution of rest days. There is considerable research into impacts of different 

shift lengths. Long shifts (e.g. 12 hour shifts) were popular with employees, largely because of the 

longer periods of time off and greater freedom on weekends and evenings (Northrup ,1989). However, 

Tucker et al (1996) reported that towards the end of a 12 hour shift there is a risk of fatigue and 

decreased alertness of employees especially when the job role is highly monotonous and sedentary.  

 The distribution of rest days was investigated, especially between day and night shifts, and their 

effect on alertness, chronic fatigue and other health problems were investigated by Tucker et al (1999), 

Flo et al (2014), etc.  

 Delaying shift start and end times also have an effect on the performance at work (Rosa et al, 

1996).  

 Rotating schedules can move forwards (so-called forward-rotating schedules), which means that 

employees shifts progress from morning to afternoon to night in a clockwise direction, and opposite i.e. 

backward (so-called backward-rotating schedules). The research into the effects of the two types of 

rotation and of alternating them was conducted by Barton et al (1994) and De Leede and McCarrick 

(2011). 

 Generally employees can work fixed shifts, which are always the same, or rotating shifts which 

change often on a weekly basis. Research into comparison of fixed shifts to rotating shifts revealed 

it was generally more difficult for the body to adjust to rotating shifts and working shifts might lead to 

health complaints (Martens, et al, 1999, Fereshteh et al 2011). 

 Negative effects of regular work more than 48 hours a week and night shifts were reported by 

Spurgeon et al (1997) and Khaleque (1999), respectively. Ferri et al 2016 concluded that nurses with 

rotating night schedules had a higher risk of both job dissatisfaction and undesirable health effects. It 

was also found that night work and schedule instability were independently associated with more fatigue 

measures than was total hours worked (Gander et al, 2007). 

 Baxter and Mosby (1988) compared different shift patterns by using a function to penalise long 

work periods unless followed by free periods long enough to compensate. However, this research 

considered only the pattern of working and free days, but not shifts of different lengths and different 

start times. 

3. Well-being measures

Based on the literature on well-being, we propose the following well-being measures: work-life balance, 

Fatigue and Risk indices, and deviations from the Health and Safety Executive (HSE) guidelines (Parkin 
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and Petrovic, 2015). HSE is an organisation which provides a regulatory framework for work place health 

and safety in Great Britain. 

3.1. Work-life balance measure 

This measure serves as an indicator of the quality of the free time in an employee’s roster. It is adapted 

from Cunningham’s research work (1982) and counts the number of 2 day free weekends, free weekend 

days, free evenings, free blocks of at least 2 days, and free days in the given rostering period. These 

components are assigned weights in a subjective manner. In order to assign a single value of this metric 

for each employee in the given rostering period, a ‘traditional’ working pattern, which consists of 5 

working days (Monday-Friday) with working hours 9am-5pm followed by 2 free days is used as basis. 

For each component, the deviation of its value from the corresponding value in a ‘traditional’ working 

pattern is calculated. Then the work-life balance measure for each employee is the average of the 

weighted sum of deviations of all work-life balance components. The higher value the better work-life 

balance measure for the given employee.  

3.2. Fatigue and Risk indices 

The HSE introduces two indices, Fatigue and Risk, and proposes how to calculate them. The value of 

Fatigue index relates to the probability of high levels of sleepiness, while Risk index is expressed in 

terms of the relative risk of an accident/incident occurring. Both indices are constructed from three 

separate components:  

1. A cumulative component relates to the way in which individual duty periods or shifts are put together

to form a complete schedule. The cumulative component associated with a particular shift depends

on the pattern of work immediately preceding that shift.

2. A component associated with duty timing includes the effect of start time, shift length and the time

of day throughout the shift.

3. A job type/breaks component relates to the content of the shift in terms of the activity being

undertaken and the provision of breaks during the shift. Factors considered in this component

include typical commuting time to or from work, workload, whether the job requires continuous

attention, if rest breaks are taken, longest period of work before a break, and rest break after longest

work period.

It is based on the Karolinska Sleepiness Scale, which ranges from ‘extremely alert’ to ‘extremely

sleepy – fighting sleep’, and takes a value from the [0,100] interval (Akerstedt and Gillberg, 1990). The 

Fatigue index is calculated for each shift of an employee and then the average and maximum values are 

calculated over the whole rostering period. 
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3.3. Deviations from HSE guidelines 

HSE investigated the effect of the shift-work on employees, and recommended the following good 

practice guidelines for shift-work schedule design (HSE, 2006):  

 Avoid placing workers on permanent night shifts.

 If possible, offer workers a choice between permanent and rotating shift schedules.

 Where possible, adopt a forward-rotating schedule for rotating shifts rather than a backward-

rotating schedule

 Either rotate shifts very quickly, e.g. every 2-3 days or slowly, e.g. every 3-4 weeks and avoid

weekly/fortnightly rotating shift schedules.

 Limit shifts to a maximum of 12 hours (including overtime)

 Limit night shift or shifts where work is demanding, monotonous, dangerous and/or safety

critical to 8 hours

 Consider if shifts of a variable length or flexible start/end times could offer a suitable

compromise

 Avoid split shifts unless absolutely necessary to meet business needs.

 In general, limit consecutive working days to a maximum of 5-7 days and make sure there is

adequate rest time between successive shifts.

 Where shifts are long (> 8 hours), for night shifts and for shifts with early morning starts, it

may be better to set a limit of 2-3 consecutive shifts.

 When switching from day to night shifts or vice versa, allow workers a minimum of 2 nights’

full sleep.

 Build regular free weekends into the shift schedule.

 Control overtime and shift swapping by monitoring and recording hours worked and rest

periods.

 For each employee, the compliance to the HSE guideline in the roster is measured, having value 1 

if the corresponding guideline is followed, 0 otherwise. Our third proposed well-being measure 

calculates the overall compliance, where 100% is assigned to rosters which meet all the guidelines.  

4. Insights obtained from using three case studies

We selected three case studies, which dealt with personnel scheduling problems of very different nature 

to obtain insights into the appropriateness of the definition of well-being measures and their use in the 

generation of schedules together with the roster performance metrics.  
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4.1. Shift-staff work across multiple sites 

Our first case study was concerned with a large governmental organisation, which operated across a 

number of sites and whose staff worked shifts that cycled over several weeks. Our task was to review 

the effectiveness of personnel scheduling in the organisation focussing on staff welfare and the efficient 

deployment of resources. At each site, a different set of fixed shift patterns was used. Interviews with 

managers, Human Resources representatives, rostering staff and Trade Union representatives were 

conducted to explore their views on what constitutes a good/bad roster, and on elements of staff well-

being. Staff were rather unhappy with their schedules at one site compared to other and complained on 

the effect that schedules had on their life and health. Our proposed well-being measures had different 

values among the sites and they vastly matched the views of the interviewed staff on their well-being.   

4.2. Nurse rostering problems 

Nurse rostering problems are known to be notoriously hard to solve due to a large number of constraints 

to consider. In our research, we used some of the nurse rostering instances from the Web page 

http://www.cs.nott.ac.uk/~psztc/NRP/, which are mostly based on real-world problems. As an 

illustration, we show the results obtained on an instance referred to as MER. In the MER instance, there 

was a large number of nurses (54); the rostering period was large (6 weeks), and that enabled us to 

adequately investigate the impact of introducing well-being measures. There was a great variety of shift 

types (12), so we could investigate the effects of fewer longer shifts versus more shorter shifts on the 

fatigue indicators. Cover constraints were defined for time periods rather than for shift types. Hard 

constraints included bounds on the required cover constraints and the minimum and maximum number 

of hours each nurse could work per fortnight. The soft constraints included preferred levels of the cover 

and requests for shifts and days off.  

A rostering algorithm based on Large neighbourhood search was employed (Burke et al, 2013). The 

performance of the rosters was determined by the total penalty caused by the violation of soft cover 

constraints and shift and days-off requests. We compared the results obtained without considering well-

being (referred to as baseline) and results obtained with the modified objective function that included 

the well-being measures with the aim to maximise the work-life balance measure, minimise maximum 

fatigue and risk indicators, and maximise adherence to HSE guidelines over all employees. Also, all the 

components in the original objective function that were related to well-being of employees were 

excluded, such as the constraint on maximum number of consecutive days on, maximum number of 

consecutive night shifts, etc. because if included they would reinforce some of the well-being measures. 

 The weights of the well-being components in the objective function were set based on the values of 

the corresponding measures obtained in the initial real-world problem that initiated our research into 
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well-being measures in rostering, and also the values obtained in the rosters created by the original 

nurse rostering algorithm. The weights are given in Table 2.  

Table 2. Weights assigned to well-being measures 

Work life balance Maximum fatigue Maximum risk HSE guidelines 

1000 if score<65% 

100 if 65%≤score<75% 

10 if 75%≤score<85% 

1000 if score>30 

500 if 30≥score>25 

100 if 25≥score> 20 

10 if 20≥score>15 

1000 if max risk>1.30 

100 if 1.30≥max risk>1.20 

10 if 1.20≥max risk>1.10 

1000 if score≤7 

100 if 7 <score≤8 

10 if 8<score≤9  

 Table 3 presents the average and worst values of well-being measures over all nurses, the number 

(percentage) of nurses who had the same or better value of the corresponding well-being measure in the 

new roster than in the baseline, and the performance of the roster. Best results are given in bold. The 

new roster had all well-being measures the same or better compared to the baseline roster. For example, 

in the new roster, maximum fatigue was much smaller than in the baseline solution with no nurse having 

maximum fatigue above 42.7 compared to 53.1 in the original roster. Also, no nurse had average fatigue 

above 33.8 compared to 43.3 in the original one. Similarly, 83% of the nurses had the same or smaller 

average risk than in the baseline roster.  

 The improvements of all well-being measures came at the price of the performance of the roster; 

namely, the trade-off between the well-being measures and performance had to be made. In the new 

roster the penalty of the cover constraints and shift requests constraints were 1300 and 2720, 

respectively, while they were smaller in the baseline, 256 and 2040, respectively. In the baseline 

solution, 204 shift requests out of 1008 were not satisfied, compared to the new roster in which 272 

requests were not satisfied. A shift request was a preference by a nurse to work a specific shift on a 

certain day or conversely not work at all on a certain day, and the weight assigned to the violation was 

10. On examining the solutions it could be seen that some of these requests were actually in conflict

with the good work-life balance measures and fatigue indicator values, which explained why they were 

less satisfied in the new roster. In particular, one nurse requested to work all night shifts, which she was 

assigned, causing a low work-life balance measure, 17.9%, and maximum fatigue of 42.7.The objective 

function compensated low well-being measures with a good performance measure and that led to the 

roster assigned to the nurse which satisfied her/his preferred night shifts. Similarly, in the new roster, 

the cover constraints were slightly less satisfied compared to the baseline solution. In particular, a 

maximum cover preference constraint was often broken. This constraint referred to a low-weighted 

preference to restrict the number of nurses scheduled during day shifts. In the baseline solution this was 

quite well satisfied. The reason for more violations in the new roster was that work-life balance and 

fatigue indicator encourage assignment of night shifts to as few nurses as possible. However, the nurses 
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had minimum contracted hours to be satisfied so these night shifts were replaced in the solutions with 

day shifts but at the expense of breaking the low-weighted maximum day time cover requirements.  

 In our further experiments, with a careful change of weights of the well-being components in the 

objective function, and inclusion of additional constraints (e.g. a maximum number of night shifts) it 

was possible to improve the performance of the rostering algorithm and at the same time some well-

being measures. 

Table 3. Well-being measures and performance achieved in the baseline and the new rosters 

for MER instance 

Baseline Roster with well-being 

WLB Average (worst) 

As well as/better off (percentage) 

75.5% (27.0%) 86.8% (17.9%) 

38 (70%) 

HSE Average (worst) 

As well as/better off (percentage) 

61.9% (33.3%) 83.5% (66.7%) 

48 (89%) 

Average fatigue of employee  

Average (worst)  

As well as/better off (percentage) 

17.6 (43.3) 5.4 (33.8) 

49 (91%) 

Maximum fatigue of employee 

As well as/better off (percentage) 

34.7 (53.1) 9.5 (42.7) 

46 (85%) 

Average risk of employee 

Average (worst)  

As well as/better off (percentage) 

0.90 (1.20) 0.84 (1.05) 

45 (83%) 

Maximum risk of employee 
As well as/better off (percentage) 

1.20 (2.33) 1.03 (1.45) 

44 (81%) 

Performance Cover constraints 256 

Shift constraints 2040 

Cover constraints 1300 

Shift constraints 2720 

 When comparing rosters generated by using original objective functions with modified ones, we 

noticed that increasing the number of working shifts did not affect linearly the well-being measures. An 

appropriate distribution of working shifts was more important for employees’ work-life balance 

measure than the number of shifts. Similarly, it was possible to increase the number of working shifts 

for a nurse in her/his roster without compromising her/his fatigue. Even more, it happened that in the 

roster with increase in the number of shifts worked compared to a baseline, the average fatigue in the 

roster was decreased, while only marginally increasing the maximum fatigue.  

The well-being measures can be easily interpreted when staff have to work to standard rosters. 

However, nurses often use a self-rostering system and express their preferences for working and/or non-

working particular shifts. This implies interesting questions. Is there a need to measure the work-life 

balance, which is highly subjective, given that staff have implicitly considered their own work-life 

balance when stating their preferences? Our view is that, organisations could use the well-being 

measures to advise staff of the implications of their preferences and to warn them if the values of the 
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measures are particularly low. For example, in general, staff prefer longer, fewer shifts (e.g. 12 hour 

shifts, 4 days on, 4 days off) but this considerably worsens the Fatigue index.  

4.3. Shift scheduling in a call-centre 

Recent years have witnessed a large growth in the call-centre industry. Call-centres deal with phone 

calls (and possibly e-mails) and usually have to provide 24/7 service. This case study was concerned 

with a large call-centre in the UK with a target to answer 90% of calls within 20 seconds (Petrovic et 

al, 2018). This service had to be provided with a given number of employees. The initial consultancy 

work focused on the analysis of different shift patterns and their effect on roster performance using 

simulation modelling. The next step was to generate optimal schedules given a number of employees 

and shift patterns agreed with the Performance manager and Human Resource manager. We developed 

an optimisation model for designing shift patterns and personnel scheduling. The input to our problem 

was a shift pattern i.e. a sequence of shifts. Every employee worked one shift per day and shifts allocated 

to the employee cycled throughout the shift pattern. In our model, there were two types of decision 

variables: to determine a start time and duration of each shift, while shifts were subject to constraints, 

and to allocate to each employee a start day in a shift pattern while satisfying the constraints on the 

employees’ contracts. The constraints on each shift included the earliest and latest start and end time, 

and the minimum and maximum duration. The allocated start day determined the roster for that 

employee for the whole rostering horizon. Two metrics were defined as performance measures for the 

generated roster: (1) ineffectiveness, which measured the degree to which the business requirement has 

not been met, i.e. there was a shortage of employees required to meet the demand predicted for the time 

period, and (2) inefficiency, which measured the degree to which nugatory hours have been scheduled. 

The objective function was defined as a weighted sum of ineffectiveness, inefficiency, Fatigue index, 

work-life balance, and HSE Guideline compliance index. In our previous case study, it was noted that 

Fatigue and Risk indices were highly positively correlated, and consequently we decided to keep only 

the Fatigue index. The work-life balance indicator was predefined so that smaller values were better. 

The objective function had to be minimised. An Evolutionary Algorithm to search for best schedules 

was developed using Solver add-in within Excel. Our problem instance was formulated based on the 

call-centre and had 20 employees, while the rostering horizon was 56 days. The generated schedules 

were analysed and compared with the schedules generated manually in the call-centre and schedules 

generated by the Evolutionary Algorithm without well-being components in the objective function. The 

results are presented in Table 4. The weight of ineffectiveness was larger than of other objectives 

because the shortage of staff had to be met via the allocation of additional staff, which was a costly 

solution. All schedules were 100% efficient, i.e. did not have employees unnecessarily scheduled in a 

time period. However, our schedule improved ineffectiveness by 20% i.e. matched better the predicted 

demand, improved considerably the adherence to HSE guidelines, and improved slightly the work-life 
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balance. The Fatigue index was not improved probably due to the constraints on shifts design, which 

implicitly took care of fatigue.  

Table 4. Results 

Objective Weight Call centre 

Evolutionary 

Algorith without 

well-being 

Evolutionary 

Algorith witht 

well-being 

Inefficiency 1 0.0000 0.0000 0.0000 

Ineffectiveness 1.4 0.0395 0.0257 0.0315 

Fatigue 1 0.0758 0.0921 0.0795 

HSE 1 0.1167 0.1167 0.0467 

Work-life balance 1 0.0254 0.0254 0.0246 

Objective function 0.2733 0.2701 0.1948 

 We observed that Evolutionary Algorithm was able to generate several different schedules with 

similar values of the objective function, i.e. similar values of the performance and well-being 

components of the objective function. However, they were very different in terms of shift hours. This 

may serve very well in the discussion between the management and staff, who assess schedules from 

different aspects. It may give an opportunity to staff to have more power in shift negotiations without 

compromising the performance of the rosters. 

5. Conclusions

The presented research is concerned with the important issue of addressing employee well-being in 

modelling and solving personnel scheduling problems. Based on the available literature we propose 

measures for well-being which should be explicitly included in personnel scheduling. Three case studies 

were used to evaluate the appropriateness of the proposed measures, and the effect of having well-being 

measures on the quality of the generated rosters. Our research shows that it is possible to improve staff 

well-being with appropriately constructed rosters without seriously compromising business efficiency 

and effectiveness.  

 Recently, suggestions to include well-being of employees in personnel scheduling problems and also 

in future rostering competitions has emerged (Gärtner et al, 2018). The researchers propose additional 

constraints to address employees’ well-being (opposite to our approach in which explicitly defined well-

being measures are included in the objective function). Especially encouraging is that these suggestions 

were made by practitioners with many years of experience in personnel scheduling. We believe that 

employee well-being measures should also be taken into account in other phases that precede and follow 

the generation of rosters, i.e. the planning/staffing decision on the number of employees required to 

cover the predicted demand and the re-scheduling activities which often happen in the real-world and 

involve changes to the roster to respond to unforeseen circumstances. 
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Abstract In this work, the combinatorial structures which imply polynomial-
time solvability in staff scheduling problems are investigated. We introduce hi-
erarchical constraints to emphasize the hierarchical relation among constraints
and contribute a characterization for a large class of tractable optimization
problems with totally unimodular matrices in their integer linear programs.
As a result, polynomial-time solvable personnel scheduling problems in liter-
ature can be further extended and generalized, as hierarchical management
requirements are often considered in practice. Furthermore, an approach to
derive the minimum cost network flow problems from the proposed hierar-
chical constraints is established. The newly obtained insight into the general-
ized boundary between tractable and intractable staff scheduling constraints
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1 Introduction

Staff scheduling or personnel scheduling is a common operational management
challenge with significant impact on operating costs, employee satisfaction, etc.
As practical personnel scheduling problems constantly arise from real world
applications, various methods including exact algorithms, heuristics and meta-
heuristics have been extensively investigated [4, 12, 2]. However, theoretical
studies of their models are relatively limited, as their importance has been
underestimated [11].

Many staff scheduling problems are NP-hard due to the presence of specific
constraints [8]. Recently, polynomial time solvable models in staff scheduling
have attracted growing attention, since they incorporate representative and
fundamental constraints involved in many industrial variants and they are
straightforward to analyze. The first systematic study on staff scheduling mod-
els was presented by Brucker, et al [3], where several polynomial-time solvable
rostering problems were recognized using minimum cost network flow mod-
els. The class of tractable rostering problems was extended by applying new
techniques of network flow reformulation [1, 10, 11, 7]. However, these studies
lack generality, as they are based on network flow models to be customized
for different problems.

To obtain general insights into characteristics of tractable staff schedul-
ing problems, we consider the polyhedra of associated linear programs and
find special hierarchical relations between constraints to develop a sufficient
condition for identifying tractable scheduling problems. Models in literature
[10, 11] are further extended to incorporate more realistic hierarchical require-
ments while preserving the polynomial-time solvability. Furthermore, a general
method to derive minimum cost network flow problems from a collection of the
proposed hierarchical constraints is presented to link this work with previous
studies of staff scheduling based on network flow models.

This paper is organized as follows. Section 2 introduces basic terminology
and properties of integer linear programs. Section 3 presents the hierarchi-
cal structures in constraints which make its integer program tractable and
a consequent algorithm to identify the polynomial-time solvability of integer
linear programs. Examples and applications of hierarchical constraints in staff
scheduling problems are explored in Section 4. Finally, Section 5 includes con-
clusions and future work.

2 Preliminaries

The integer linear program (ILP) is one of the most frequently used models in
staff scheduling. We consider an ILP P0 in a generic form:

P0 : min{cTx : Ax ≤ b,x ≥ 0,x ∈ Zn} (1)

of which c,b are vectors and A is a matrix with integer entries.
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H = {x|Ax ≤ b,x ≥ 0} defines the polyhedron of the linear programming
relaxation (LPR) of P0. In general, optimal solutions of the LPR of P0 can
be fractional and infeasible, but total unimodularity of A is an important
property which guarantees the integrality, as shown in Theorem 1.

Definition 1 A matrix Am×n is totally unimodular (TU) if each square sub-
matrix of A has determinant in {0, 1,−1} [9].

Theorem 1 A matrix A is totally unimodular if and only if the polyhedron
{x|Ax ≤ b,x ≥ 0} is integral for any integral vector b in P0 [5].

According to Theorem 1, if A is TU and constants b are all integers, P0 is
is solvable in polynomial time, since its optimal solutions are the same as its
LPR’s solutions.

3 Hierarchical constraints and their systems

In this section, we introduce hierarchical constraints which are key in estab-
lishing the tractability of the aforementioned ILP formulation P0.

As shown in Section 2, constraints coefficients determine the complexity
of an ILP. We consider the coefficients in each constraint as a vector and
apply the Hadamard (entry-wise) product of constraint vectors to define the
hierarchical relationship between constraints.

Definition 2 The Hadamard product of two vectors a = (a1, ..., an) and b =
(b1, ..., bn) is denoted as a⊙ b = (a1b1, ..., anbn) [6].

Definition 3 Two constraints C1, C2 are hierarchical, if their coefficient vec-
tors c1, c1 has a Hadamard product such that c1 ⊙ c2 ∈ {0,±c1,±c2}. Ad-
ditionally, every entry of c2, c2 must be in {0, 1,−1} and constants in their
constraints must be integers.

The following is an explanation of the hierarchy of two constraints C1,
C2, based on the vectorized computation of their constraint coefficient vectors
c1, c1:

1) c1 ⊙ c2 = 0 ⇐⇒ the two constraints are disjoint, i.e., they contain no
common variable (with nonzero coefficients). For example, C1 : 1x1 + 1x2 +
0x3 + 0x4 ≤ b1 and C2 : 0x1 + 0x2 + 1x3 + 1x4 ≤ b2.

2) c1⊙c2 = c1 or −c1 ⇐⇒ all the variables in C1 are included in C2. For
instance, C1 : 1x1+1x2+0x3+0x4 ≤ b1 and C2 : −1x1−1x2−1x3−1x4 ≤ b2;

3) c1 ⊙ c2 = c2 or −c2 ⇐⇒ C1 has all the variables in C2. In other
words, C1 contains C2;

4) c1 ⊙ c2 /∈ {0,±c1,±c2} ⇐⇒ C1 and C2 are not hierarchical.

The relationship level of two hierarchical constraints is defined as follows.
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Definition 4 The hierarchical level of a constraint C1 is lower than that of
a constraint C2 denoted as C1 ≤H C2, if their coefficient vectors have a
Hadamard product c1 ⊙ c2 ∈ {±c1} and c1 ̸= ±c2. Furthermore, C1 <H C2

donates the case that there is no other constraint C3 with a hierarchical level
between that of C1 and C2, i.e., C1 ≤H C3 ≤H C2.

Since there are usually more than two constraints in an ILP of P0, a special
collection of constraints is defined in Definition 4.
Definition 5 A hierarchical constraint system is a collection of constraints
in which every pair of constraints is hierarchical.

For example, constraints x1 + x2 + x3 ≤ b1, −x2 − x3 ≤ b2 and −x1 ≤ b3
are a system of hierarchical constraints.

Theorem 2 If the constraints of an ILP consist of no more than two hierar-
chical constraint systems, the problem can can be solved in polynomial time.

Proof According to Theorem 1, Definition 3 and Definition 5, we only need
to prove total unimodularity in the constraint coefficient matrix A of an ILP
with at most two hierarchical constraint systems H1 and H2.

Mathematical induction is applied to show that an arbitrary square sub-
matrix B of A, has determinant det(B) ∈ {0,±1}. If only one element is in
B, det(B) ∈ {0,±1} by definition. Assume det(Bk×k)∈ {0,±1} for any square
submatrix with k dimensions (k > 1), the case (det(B(k+1)×(k+1)) ∈ {0,±1})
of any k+1 dimensions square submatrix remains to be verified.

It is noted that det(B(k+1)×(k+1)) will at most change its sign and preserve
magnitude by applying the following elementary row operations. For a row in
B(k+1)×(k+1) from a constraint with level n in H1 or H2, we replace it by the
entrywise sum or difference with other rows from constraints in level n − 1
of the same hierarchical constraint system. Repeating this procedure until we
get a new matrix B′

(k+1)×(k+1) of which at most two nonzero entries are in
each column, because there are at most two hierarchical constraint systems.
Finally, the proof is concluded as follows.

1) If B′
(k+1)×(k+1) has a column with only zero entries, det(B′

(k+1)×(k+1)) =

det(B(k+1)×(k+1)) = 0;
2) If B′

(k+1)×(k+1) contains a column of a single nonzero entry (1 or -1),
det(B′

(k+1)×(k+1)) = ±det(B(k+1)×(k+1)) ∈ {0,±1}, using determinant expan-
sion by minors;

3) If all columns in B′
(k+1)×(k+1) have two nonzero entries, the sum of the

rows from H1 must equal to that from H2 by Definition 3 and Definition 5.
Consequently, det(B′

(k+1)×(k+1)) = det(B(k+1)×(k+1)) = 0.

Hierarchical constraint systems can be used for fast identification of a wide
range of polynomial-time solvable problems with no more than two hierarchi-
cal constraint systems according to Theorem 2. The number of hierarchical
constraint systems is counted by using the Hadamard products of pairwise
constraints’ coefficient vectors in Definition 3. If two constraints are not hier-
archical, they must be in different hierarchical constraint systems.
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4 Applications of hierarchical constraints in staff scheduling

4.1 Tractable personnel scheduling problems

A general personnel rostering problem is to assign employees i ∈ E = {1, 2, ..., |E|}
to shifts k ∈ S = {1, 2, ..., |S|} on days j ∈ T = {1, 2, ..., |T |}, considering op-
erational constraints and objectives (e.g., costs or employee satisfaction) [11].
The assignment of employee i to shift k on day j is denoted as xijk = 1,
otherwise xijk = 0.

Problem P1 [10] is an example of staff rostering with hierarchical con-
straints and is presented here to demonstrate an application of Theorem 2 to
other real problems. A cost cijk is incurred by the assignment xijk = 1. The
objective is to minimize the total cost of the final schedule. The total num-
ber of shifts (or days) that employee i should work is ai. The minimum and
maximum number of employees required for shift k on day j are dljk and dujk
respectively. The ILP of P1 is formulated as follows.

P1 : Min
∑
i∈E

∑
j∈J

∑
k∈S

cijkxijk (2)

s.t.
∑
k∈S

xijk ≤ 1, ∀i ∈ E, j ∈ T (3)∑
j∈T

∑
k∈S

xijk = ai, ∀i ∈ E (4)

∑
i∈E

xijk ≤ dujk, ∀j ∈ T, k ∈ S (5)∑
i∈E

−xijk ≤ −dljk, ∀j ∈ T, k ∈ S (6)

xijk ∈ {0, 1}, ∀i ∈ E, j ∈ T, k ∈ S (7)

Inequalities (3) are single assignment constraints, which restrict that an
employee work at most one shift per day. The total assignment constraints
(4) ensure that the total assignments of employee i equals ai. The coverage
constraints (5) and (6) define the range of requirements of employees for shift
k on day j. Integrality of decision variables is constrained by (7). As the
decision variables and their coefficients in constraints of P1 are integers, all the
constants (ai, dljk, dujk) in the form in constraints must be integers, otherwise
we just round them into integers.

It is trivial to convert P1 into the generic problem P0 by replacing the total
assignment constraints (4) with two inequality constraints. Fig. 1 shows the
constraint coefficient matrix of P1 with |E| = |T | = |S| = 2. There are two
hierarchical constraint systems partitioned by the line in Fig. 1, of which the
correctness can be easily verified by Definition 3. It is noted that the integer
constraints (7) are hierarchical with all constraints in P1, since their linear
relaxations have an identity matrix of coefficients. Therefore, P1 not only has
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a polynomial-time solvable network flow model as shown in [10], the ILP of
P1 is also tractable by Theorem 2.

x1,1,1 x1,1,2 x1,2,1 x1,2,2 x2,1,1 x2,1,2 x2,2,1 x2,2,2



Con(3)


1 1

1 1

1 1

1 1

Con(4)


1 1 1 1

−1 −1 −1 −1

1 1 1 1

−1 −1 −1 −1

Con(5)


1 1

1 1

1 1

1 1

Con(6)


−1 −1

−1 −1

−1 −1

−1 −1
Con(7){ I8

Fig. 1: The partition of constraint matrix of A1

An important tractable extension to P1 is adding constraints (8), where
D̄i is a set of pairwise disjoint subsets of the day set T for each employee i,
i.e., F1 ∩ F2 = ∅, F1 ⊆ T, F2 ⊆ T, ∀F1, F2 ∈ D̄i. This new type of constraint
can limit the number of working shifts (or days) of an employee i in the range
[ml

iF ,m
u
iF ] within disjoint periods such as weekends [11].

ml
iF ≤

∑
j∈F

∑
k∈S

xijk ≤ mu
iF , ∀i ∈ E,F ∈ D̄i (8)

Constraints (8), (3) and (4) are in the same hierarchical constraint system
according to Definition 5. Here we present a more general set of constraints (9)
replacing constraints (8) to preserve polynomial-time solvability. In constraints
(9), Gi is a set of subsets of the day set T for employee i, and F1 ∩ F2 ∈
{F1, F2, ∅}, F1 ⊆ T, F2 ⊆ T , ∀F1, F2 ∈ Gi. This extension enables the inclusion
of assignment restrictions of employees within hierarchical periods in P1. For
example, the constraints that restrict the range of assignments (workload) of
an employee in hierarchical periods such as weekends, weeks and months.

ml
iF ≤

∑
j∈F

∑
k∈S

xijk ≤ mu
iF , ∀i ∈ E,F ∈ Gi (9)

Furthermore, constraints with a hierarchy among employees can also be
included in P1. A common situation is that there are coverage constraints in
terms of particular groups of employees (such as skilled workers, interns and
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general workers) required for a shift k on a day j, as formulated by constraints
(10). Qk are a collection of subsets of the employee set E such that L1 ∩L2 ∈
{L1, L2, ∅}, L1 ⊆ E,L2 ⊆ E, ∀L1, L2 ∈ Qk. In other words, all sets in Qk are
hierarchical instead of pairwise disjoint.

ml
kL ≤

∑
i∈L

∑
j∈T

xijk ≤ mu
kL, ∀k ∈ S,L ∈ Qk (10)

Similarly, there are constraints with a hierarchy in terms of shifts, repre-
sented by constraints (11). This kind of constraints models the restriction on
the number of shifts in several categories (Y ∈ Wi) worked by an employee
i, where Y1 ∩ Y2 ∈ {Y1, Y2, ∅}, Y1 ⊆ T, Y2 ⊆ S, ∀Y1, Y2 ∈ Wi. For example,
contractual constraints restrict the maximum workload in terms of morning
shifts, daytime shifts and evening shifts defined in Wi. In this case, the day-
time shifts include morning shifts (their intersection equals to the morning
shifts). The set of evening shifts are disjoint with the morning shift set and
the daytime shift set.

mu
iY ≤

∑
i∈E

∑
k∈Y

xijk ≤ mu
iY , ∀i ∈ E, Y ∈ Wi (11)

However, at most two kinds of constraints from (9), (10) and (11) can
be included in a polynomial-time solvable model, as there are at most two
hierarchical constraints systems according to Theorem 2.

It is also noted that the inclusion of soft constraints [7] to P1 is tractable,
if no additional hierarchical constraints systems are introduced.

4.2 Derivation of network flow problems

Network flow models can be more efficient than the ILP formulations for a
polynomial-time solvable rostering problem [10]. The challenge is that the
network layout varies from problem to problem. Hence, this section presents
a general method to derive a minimum cost flow problem from an ILP with
at most two hierarchical constraint systems (H1, H2), as an application of the
proposed hierarchical constraints. The main procedures are described below.
Without loss of generality, we assume that H1 and H2 are not empty.

1. Node generation: add a variable node for each decision variable; gen-
erate constraint nodes corresponding to constraints in H1 and H2

2. Arc generation I: add an arc from a variable node to constraint nodes
associated with the lowest-level constraints in H1, if the corresponding variable
has nonzero coefficient (±1) in that constraint; connect variable nodes with the
constraint nodes from H2 with the same manner but in the opposite direction.

2. Arc generation II: add an arc (u, v) between constraint nodes u and
v which correspond to constraints C1 and C2 with adjacent hierarchical levels
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in H1 respectively such that C1 <H C2; develop arcs in the reverse direction
among constraint nodes from H2 using the same rule.

3. Parameter configuration: set the supply and demand of a source node
s and a sink node t and connect them with the constraint nodes associated with
top-level constraints in H1 and H2 respectively; set capacity of arcs according
to the constants of their relevant constraints in H1 and H2.

Fig. 2: The derived network flow problem from P1

Generating the network is generic for any ILP with one or two hierarchical
constraint systems, but the parameter configuration is problem dependent.
Fig. 2 illustrates the network created by applying the presented approach on
an instance of P1. The supply of the source s and the demand of the sink t are
equal to

∑
i∈E ai. The lower and upper bound of flows from s to constraint

nodes associating the coverage constraints (5) and (6) in H2 are dljk and dujk
respectively. Then a flow from these constraint nodes to their upper constraint
nodes corresponding to constraints (7) is limited in the range of [0,1]. There is a
unit cost cijk of the flow to the variable node associating the decision variable
xijk from the constraint nodes associated with constraints (7). As a result,
costs of assignments can be calculated as the costs of flows. Furthermore, the
flow from the bottom hierarchical level nodes associated with constraints (3)
in H1 to their upper nodes has a capacity of one unit, according to the single
constraint (3). Finally, the flow from the top-level constraint nodes representing
total assignment constraints (4) in H1 to t is bounded by ai, i.e., the required
number of total assignments (working days) of employee i. Therefore, the
derived minimum cost network flow problem is an equivalent of P1.

31

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



Hierarchical constraints and their applications in staff scheduling problems

5 Conclusions

This paper presents theoretical results concerning the constraints’ effects on
the complexity of optimization problems in a general setting of integer linear
programs. Hierarchical constraints are identified and formulated to charac-
terize the ILPs with polynomial-time solvability for a large class of personnel
scheduling problems, without problem-dependent reformulations into tractable
network flow problems [3, 10, 11, 7]. Consequent applications are introduced,
including vectorized testing of polynomial-time solvability, several extensions
of well-known tractable problems and the derivation of network flow problems
from hierarchical constraints systems. These examples and applications vali-
date that the hierarchy in constraints is one of the structural reasons why some
staff scheduling problems/models are easy and can be remodeled as tractable
minimum cost network flow problems in previous work [3, 10, 11, 7].

In the future, our focus will shift to the integration of tractable models
into solution methods for complex personnel scheduling problems.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algo-
rithms and Applications. Prentice Hall, Upper Saddle River, New Jersey,
USA (1993)

2. Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E.,
De Boeck, L.: Personnel scheduling: A literature review. European Journal
of Operational Research 226(3), 367–385 (2013)

3. Brucker, P., Qu, R., Burke, E.: Personnel scheduling: Models and complex-
ity. European Journal of Operational Research 210(3), 467–473 (2011)

4. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and
rostering: A review of applications, methods and models. European journal
of operational research 153(1), 3–27 (2004)

5. Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhe-
dra. In: 50 Years of Integer Programming 1958-2008, pp. 49–76. Springer
(2010)

6. Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge university press
(2012)

7. Li, C., Smet, P., De Causmaecker, P.: Polynomial-time personnel schedul-
ing with soft constraints. In: Proceedings of the 12th international confer-
ence on the practice and theory of automated timetabling, pp. 501–505.
PATAT (2018)

8. Osogami, T., Imai, H.: Classification of various neighborhood operations
for the nurse scheduling problem. In: International Symposium on Algo-
rithms and Computation, pp. 72–83. Springer (2000)

9. Schrijver, A.: Combinatorial optimization: polyhedra and efficiency,
vol. 24. Springer Science & Business Media (2003)

32

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



Chao Li et al.

10. Smet, P., Brucker, P., De Causmaecker, P., Vanden Berghe, G.: Polyno-
mially solvable formulations for a class of nurse rostering problems. In:
Proceedings of the 10th international conference on the practice and the-
ory of automated timetabling, pp. 408–419 (2014)

11. Smet, P., Brucker, P., De Causmaecker, P., Vanden Berghe, G.: Polyno-
mially solvable personnel rostering problems. European Journal of Oper-
ational Research 249(1), 67–75 (2016)

12. Vermuyten, H., Rosa, J.N., Marques, I., Belien, J., Barbosa-Póvoa, A.: In-
tegrated staff scheduling at a medical emergency service: An optimisation
approach. Expert Systems with Applications 112, 62–76 (2018)

33

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



Scheduling Bus Drivers in Real-Life Multi-Objective
Scenarios with Break Constraints

Extended Abstract

Lucas Kletzander · Nysret Musliu

Received: date / Accepted: date

1 Introduction

When there is varying demand for employees at different times of the day, it
is important to have efficient schedules for the employees in order to cover
the demand with minimal cost. On the other hand, there is a range of le-
gal requirements, collective agreements and company policies that need to be
taken into account to create feasible schedules. Further, not every schedule
that is feasible will be readily accepted by the employees, purely optimizing
cost might result in reduced employee satisfaction and potential conflicts with
labour unions.

An area that is especially restricted by various constraints is scheduling
for drivers in public transport. As these employees have a great responsibil-
ity keeping their passengers safe, legal requirements enforce strict break as-
signments in order to maintain concentration. In addition to that a spatial
component needs to be considered. This makes the goal to create cost-efficient
and employee-friendly schedules even more challenging. This paper deals with
optimizing schedules for bus drivers in Austria, using the regulations from
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the Austrian collective agreement for employees in private omnibus providers
serving regional lines.

The contributions of this work are as follows. We extend previous work [12]
on the problem with a focus on more complex objectives including various new
criteria that are relevant in practice. As in [12], we also apply a Simulated
Annealing approach, but we additionally propose new moves that take into
account the characteristics of the extended problem. Based on this, we can
provide high quality solutions for real-life scenarios.

2 Related Work

Due to its high practical relevance, the topic of employee scheduling has seen
tremendous research for many years. Several surveys [8,3] provide a good
overview of work in different areas. A survey for the different objectives in
operating bus transport systems is provided by [11]. Driver scheduling is lo-
cated between vehicle scheduling and driver rostering in a six step process.
Driver scheduling belongs to the area of crew scheduling problems [8] that is
also frequently applied to airline [9] and train crew scheduling.

Research on Bus Driver Scheduling (BDS) Problems has started decades
ago [24]. Previous work explored different solution methods. Exact methods
mostly use column generation with a set covering or set partitioning master
problem and a resource constrained shortest path subproblem [19,7,17,14].
Heuristic methods like greedy [16,6,20] or exhaustive [4] search, tabu search
[15,18], genetic algorithms [15,13] or assignment problems [5] are used in differ-
ent variations. The scheduling of breaks within shifts is considered by several
authors [1,2,22].

[12] presents a complex version of the BDS problem based on the Austrian
collective agreement for employees in private omnibus providers [23], using the
rules for regional lines (up to 50 km per line). New benchmark and real life
instances are solved using Simulated Annealing.

3 Problem Description

The Bus Driver Scheduling Problem deals with the assignment of bus drivers
to vehicles that already have a predetermined route for one day of operation.
The shifts that are generated need to respect a range of constraints regarding
length and complex break assignment rules. The specification presented here
extends [12]. New extensions are presented in sections 3.3 and 4.

3.1 Problem Input

The bus routes are given as a set of individual bus legs L, each leg ` ∈ L is
associated with a tour tour ` (corresponding to a particular vehicle), a start
time start`, an end time end `, a starting position startPos` and an end position
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Table 1 Example bus tour

` tour` start` end` startPos` endPos`
1 1 360 395 0 1
2 1 410 455 1 2
3 1 460 502 2 1
4 1 508 540 1 0

endPos`. The amount of time within the leg that is actually spent actively
driving is specified as drive`. This problem uses drive` = length` = end ` −
start`.

Table 1 shows a short example of one particular bus tour. The vehicle starts
at time 360 (6:00 as our time units are minutes) at position 0, which could be
the bus depot. 35 minutes later it arrives at position 1. Before the next leg of
the bus tour there is a 15 minutes waiting time which might qualify as a break
for the employee depending on the constraints explained later. After four legs,
the bus returns to the depot at time 540. Valid input never has overlapping
bus legs for the same tour and consecutive bus legs i, j of the same tour always
respect endPosi = startPosj .

Further input is a distance matrix, which, for each pair of positions i and
j, denotes a time di,j it takes a driver to get from i to j when not actively
driving a bus. If no transfer is possible, we set di,j =∞. di,j with i 6= j is called
passive ride time. di,i represents the time it takes to switch tour at the same
position, but is not considered passive ride time. We define the occurrence of
a tour change as when a driver has an assignment of two consecutive bus legs
i and j with tour i 6= tour j .

Finally, for each position i an amount of working time for starting a shift
at that position startWork i and for ending a shift endWork i are given. At
any depot d preparing the bus (startWorkd = 15) and finishing the bus
(endWorkd = 10) are considered, for other positions the value is 0.

3.2 Solution

A solution to the problem is an assignment of exactly one driver to each bus
leg. A feasible solution must satisfy the following criteria:

– No overlapping bus legs are assigned to the same driver.
– Whenever tour or position changes for a driver between assigned bus legs

i and j, then startj ≥ end i + di,j .
– Each shift respects all hard constraints regarding work regulations as spec-

ified in the next section.

Within the set of feasible solutions, different criteria might be optimized
as explained later.
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3.3 Work and Break Regulations

Valid shifts for drivers are constrained by work regulations and require fre-
quent breaks. There are many constraints related to different measures of the
schedule.

– Driving time: The time actually spend driving the vehicle is constrained
by a maximum value of 9 hours and the requirement for breaks after at
most 4 hours of driving that might be split into smaller parts.

– Total time: The time between the start and end of the shift is limited to
14 hours.

– Working time: The working time does not include certain unpaid breaks
or shift splits, there are complex rules which breaks are unpaid according
to their length and location within the shift. The working time should be
within 6.5 and 10 hours except for part time employees whose working time
may last only three hours.

This work extends the problem by looking at different vehicle types as well
as training of employees. First, this leads to the notion of the level of a duty,
based on the different vehicles and the different lines that a duty contains.
More different vehicles and lines require an employee to be trained for all
of them, therefore the level of the duty is higher. Second, when optimizing
duties for both bus and tram lines, some tram lines have different driving
break requirements compared to the bus lines. Therefore, the driving break
requirements become dependent on the current line of a duty.

4 Objectives

There are several optimization criteria, setting a different and often conflicting
focus on the resulting schedules. These include both cost objectives and objec-
tives to obtain schedules that are actually workable in practice considering the
needs of the employees. The following minimization objectives are considered
in our real-life application:

– Number of employees (cost objective)
– Sum of working times (cost objective)
– Sum of missing working time (shifts below 6.5 hours need to be paid 6.5

hours anyway, in combination with the previous objective this enforces
shifts to be well distributed)

– Sum of long unpaid break time (time above a limit of 1.5 hours)
– Sum of passive ride times (drivers are riding as a passenger or walking to

a different location)
– Number of major location changes (drivers change to a different location

that is very far away, including a hard maximum of one such change per
duty)

– Number of duties where the second part is longer than the first part (to
achieve a favourable location of the main break)
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– Number of duties with more than two stretches (a stretch is defined as a
consecutive assignment of bus legs on the same tour, i.e., this objective
minimizes vehicle changes, also including a hard maximum of three parts
per duty)

– Sum of missing break safety time (driving breaks should be several minutes
above the minimum length in order to have a buffer for minor operational
delays, this objective sums missing buffer time)

– Sum of missing stretch time (a stretch should be at least 1.5 hours, this
objective sums the difference in case a stretch is shorter)

– Sum of the squared duty levels (reduce especially high levels)

5 Solution Method and Results

The solution method is based on a construction heuristic and Simulated An-
nealing. The objectives are combined using a linear objective function. The
weights are set based on the goals of the bus operator. Compared to previous
schedules, the importance of the different goals are set (should be improved,
should not get worse, might get worse in a certain range) and the weights are
repeatedly tuned and carefully evaluated to match those goals.

The construction heuristic uses a greedy approach trying to assign con-
secutive bus legs of the same tour to the same duty. Simulated Annealing
uses different moves that are applied to duties with high objective values with
higher probability.

Different moves are used for the problem:

– Moving a bus leg to a different duty
– Swapping bus legs between different duties
– Swapping a range of bus legs between different duties
– Swapping stretches between different duties

Regarding the selection of the duties for the application of a move, with
higher probability we select duties such that consecutive elements of the same
tour are placed next to each other. As duties with many stretches are un-
wanted, this selection of moves combined with their application helps to reduce
the number of tour changes in the solution.

The method has been deployed in practice just recently. We have applied
it to a real-world scenario where solutions calculated with different weight dis-
tributions allow to compare different options. Compared to existing solutions
the initial results can provide solutions that greatly improve important char-
acteristics of the duties like the long break times while moderately raising less
important characteristics in a controlled way. Table 2 shows a comparison of
the results for the focus on improving long breaks and passive ride time. The
total paid working time can be slightly improved, unpopular break over-length
can be reduced by more than half, passive ride time by more than a third, and
major location changes by two thirds, while increased short breaks and duty
levels are still acceptable.
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Table 2 Objective improvements

Objective Goal Previous New
Employees keep 133 134

Working time (inc. missing) not worse 64904 64722
Long break time better 2905 1261
Passive ride time better 810 525

Major location changes better 15 5
Second > first not worse 49 46

3 stretches better 14 13
Short break time worse 29 47

Missing stretch time not worse 95 98
Duty levels worse 374 767

As future work we will provide more detailed experimental results. It would
also be interesting to explore computing a Pareto front for the problem. How-
ever, due to the large number of objectives this will be difficult and will require
methods from the area of many-objective optimization [21,10].
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Abstract We consider the rehearsal scheduling problem, typically stated
in the context of theater, film, and performing arts. We are given a set of actors
and scenes. Scenes may consist of several actors and actors may be in several
scenes. We are also given a set of timeslots when scenes can be scheduled. The
objective is to arrange the scenes into timeslots to produce a “good” schedule.

In theoretical work, “good” means minimizing the total hold time: the
time between an actor’s first scheduled scene and last scheduled scene during
which they are not working. The theoretical setting is idealized to ignore actor
conflicts, precedence between scenes, uneven scene lengths, optional actors,
and other practical considerations. In practice, rehearsal scheduling is as
much an art as a science, as there is no concise, agreed-upon definition of what
constitutes a good schedule.

In this work, we conduct a survey of practitioners who regularly solve
the rehearsal scheduling problem. Almost all of them currently solve the
optimization problem by hand. We ask them to prioritize features of a good
schedule. As a control, we also ask them to prioritize various utility features:
features which do not affect the optimization, but affect how the user interacts
with the system that generates the schedule. Based on the survey, we formulate
the rehearsal scheduling problem as a series of integer programs. We then
build a tool for practitioners to schedule their shows.

We test the tool in 14 real-world use cases. We find that practitioners
respond very positively to the results of the optimization solver. However, we
learn that there are many other utility features which would be necessary for
the optimization tool to gain widespread use.
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1 Introduction

In the rehearsal scheduling problem, we are given a set of n actors and
m scenes. Scenes require a certain set of actors. Actors may be required by
several scenes. We are also given a set of timeslots into which scenes can be
scheduled. The objective is to arrange the scenes into timeslots to produce a
“good” schedule.

The talent scheduling problem is the study of the rehearsal schedul-
ing problem in the idealized setting, with a single, clear objective function,
namely to minimize hold time. We assume that the actor arrives for the first
scene they are in and leaves after the last scene. Any time between their ar-
rival and departure when they are not rehearsing is hold time. The talent
scheduling problem is sometimes called the hold cost minimization prob-
lem.

The input to the talent scheduling problem is typically presented as a
binary matrix, where there is one row for each actor and one column for each
scene. The output is an ordering of the columns of the matrix. For each row,
its “hold time” is the number of zeros between the first and last one in the
new column ordering. The objective is to minimize total hold time. See figure
1.

There is a dynamic programming algorithm for solving talent schedul-
ing optimally, though it has an exponential running time [1]. For solving the
talent scheduling problem on instances of realistic sizes, custom branch-
and-bound algorithms have been effective. The key idea in most of these al-
gorithms is to first specify the first scene, then specify the last scene, and
gradually work “inwards” towards the middle scenes. The first such algorithm
was proposed by Cheng, Diamond, and Lin [5] and later refined by Garcia de
la Banda et al. [7], Qin et al. [10], and Cheng et al. [4]. Others have applied
meta-heuristics to the problem, such as genetic algorithms [9].

Other authors have considered special cases of the talent scheduling prob-
lem. Determining if there is a solution with no hold time is equivalent to the
consecutive 1s problem, which can be solved in polynomial time [3]. The
case where each actor appears in exactly two scenes is the linear arrange-
ment problem, which is known to be NP-hard [5]. There exists a polylog-

Fig. 1: Example of an input to and output from the talent scheduling prob-
lem, an idealized version of rehearsal scheduling. Each row corresponds
to an actor and each column corresponds to a scene.

1 0 1 1
1 1 0 1
0 1 1 1


(a) An example input to the talent schedul-
ing problem. In this ordering, the total hold
time is 2.

0 1 1 1
1 0 1 1
1 1 1 0


(b) An example output from the talent
scheduling problem. The scenes are re-
ordered to minimize hold time.
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arithmic approximation algorithm for the linear arrangement problem
[6].

The talent scheduling problem is widely understood to be an ideal-
ized simplification of the more amorphous rehearsal scheduling problem.
Talent scheduling ignores actor conflicts, precedence between scenes, un-
even scene lengths, optional actors, and other practical considerations. The
custom branch-and-bound algorithms do not accommodate these complexi-
ties. As such, they are not adequate for practitioners. In practice, rehearsal
scheduling is as much an art as a science, as there is no concise, agreed-upon
definition of what constitutes a “good” schedule.

Several authors have approached rehearsal scheduling by extending
the models and solution ideas used for talent scheduling. Examples include
Sakulsom et al., who consider the problem the problem of scheduling rehearsals
of unequal length [11]. Another generalization comes from Wang et al., who
recognized that daily and hourly scheduling should be considered separately:
with separate costs for intra-day holding and inter-day holding [12].

Even after determining a suitable model that accounts for practitioners
needs, there is considerable engineering work. A comprehensive system was
developed by Bomsdorf and Derigs [2]. In their paper, they acknowledge “to
be accepted in practice, any planning methodology has to be highly interactive,
allowing fast and flexible rescheduling, and has to respect the planners problem
solving style, allowing them to bring in their experience.”

To develop a scheduling tool with the potential to be accepted for practical
use, we took the insight of Bomsdorf et al. to heart. In our work, we take a
user-first approach to the rehearsal scheduling problem. Our primary
contributions are:

– We conduct a survey of 44 practitioners of rehearsal scheduling to
determine what constitutes a “good” schedule. In addition to asking about
the optimization features of a hypothetical scheduling system, we also ask
about utility features: features which affect users’ interactions with the
tool, but not the optimization solution.

– Based on the survey results, we describe the rehearsal scheduling
problem as multi-objective optimization problem with three objectives.
We treat the objective functions hierarchically and solve the problem as a
series of three integer programs.

– We test our solution in 14 real-world use cases. We find that the optimiza-
tion is adequate, but additional utility features would be required in order
for the tool to have a possibility of wider adoption.

Our paper is organized as follows: In section 2, we describe our survey and
its results. In section 3, we describe the integer programming formulation. In
section 4, we describe our experimental set-up and results. In section 5, we
conclude with a few final remarks.

Remark 1 (Terminology) There is some disagreement between the terminology
used in the academic literature and the terminology used by practitioners.
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In the academic literature, it is assumed that each scene is rehearsed once.
In practice, a scene can be rehearsed several times. Switching between these
contexts is not a problem, mathematically: if a scene needs to be rehearsed
several times, then we can create several copies of it in the input.

For the sake of succinctly presenting our mathematical formulation, we will
assume the convention that each scene is rehearsed once. However, in our sur-
vey and scheduling tool developed for practitioners, we will use the industry-
standard terminology: a scene is defined once and potentially rehearsed several
times.

2 Survey of Practitioners

Surveys are effective, low-cost, and non-intrusive tools to collect primary data
about users’ pain points, needs, and preferences surrounding an existing work-
flow. Human-centered design practitioners regularly implement insights de-
rived from survey results into software development cycles [8].

We surveyed 44 active practitioners to understand their current scheduling
workflow and factors that matter the most when they schedule. We collected
the type of productions the practitioners do, the sizes of their respective pro-
duction, and their current methods of creating schedules. The responses were
collected through Google Form.

2.1 Survey Design

To formulate the rehearsal scheduling problem in a way that appeals to
practitioners, we needed to understand features of good schedules and their
relative importance. The first section of our survey was dedicated to under-
standing the considerations practitioners take into account when they create
a schedule. These features are described in section 2.1.1. As a control, we in-
cluded a second section, in which we asked practitioners to rank certain usabil-
ity features unrelated to the scheduling optimization. These control questions
served as a useful insight into the relative importance of optimization features.
They are described in section 2.1.2.

2.1.1 Optimization Features

Our survey asked participants how often they considered each of the following
features when they designed a “good” schedule. Participants rated the fre-
quency on a Likert Scale. 1 being “never considered” the feature, and 5 being
“always considered” the feature.

Hard Conflicts Times when an actor cannot make it to rehearsal. It may be
possible to rehearse a scene without a certain actor present, but, if possible,
it is best to rehearse the scene when all the actors are present.
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Soft Conflicts Times when an actor would prefer not to make it to rehearsal.
It is nice to honor these if possible to keep the actors happy, but the actor
will attend if called.

Space Constraints The availability of certain rooms in which the rehearsal
can be held. For example, it may be desirable to only rehearse a certain
scene when a music room is available or when a large room is available.

Time Efficiency Using the actors’ time as efficiently as possible.1

Spacing In some cases, it may be important to space certain rehearsals apart
from each other. For example, in one rehearsal the actors might learn chore-
ography and then several days later they review it in another rehearsal.
Even though these rehearsals use the same actors, it will be illogical to
rehearse them consecutively. See remark 1.

Precedence Assuring that certain rehearsals happen before others. This may
be necessary when there is a musical number that needs separate vocal and
dance rehearsals before they can be combined in a joint rehearsal.

Parallelization Allow several rehearsals to be scheduled in the same times-
lot. This is particularly useful in musicals, where there may be a separate
vocal and dance rehearsals. No actor can participate in two rehearsals si-
multaneously.

Breaks Create a schedule in which there are intentional temporal gaps be-
tween rehearsals. These gaps serve a dual purpose. The first is to allow
actors in several consecutive scenes some time to rest. The second is to
serve as a buffer in case certain scene rehearsals take longer than expected.

To test the comprehensiveness of our list of features, our survey also asked
practitioners if there were any features they regularly considered which we
had not asked about: “What else do you think about when designing a good
rehearsal schedule?”

2.1.2 Utility Features

Our survey asked participants, for them to want to use a scheduling tool, how
important each of the following features is to them. Participants rated the
importance on a Likert Scale. 1 being “not important,” and 5 being “extremely
important.”

Manager Enters Availability Allow a central manager to enter the avail-
ability of each actor.

Actors Enter Availability Allow the individual actors to enter their avail-
ability themselves, so that a central manager does not have to enter it on
the actors’ behalf.

Schedule Chunks Rather than scheduling all the scenes into all the timeslots
at once, allow the practitioner to select a subset of the scenes and a subset
of the timeslots to schedule.

1 For the purposes of the survey, this features was intentionally left vague, since “hold
time” is not an industry-standard term. Indeed, since our timeslots are not all contiguous,
we require a more nuanced notion of efficient time use. For more details, see section 3.
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Feature Average 5 4 3 2 1

Hard Conflicts 4.9 33 9 1 0 1
Manager Enters Availability 4.6 30 9 5 0 0

Prescheduling 4.5 30 10 1 2 1
Rescheduling 4.4 27 11 4 2 0

Space Availability 4.4 24 8 4 3 0
Time Efficiency 4.2 19 18 5 2 0

Schedule Chunks 4.2 25 8 4 4 2
Mobile 4.2 23 12 4 3 2

Choose Several Schedules 3.9 15 17 5 5 2
Integrations 3.9 18 14 5 3 4

Parallel Rehearsals 3.7 9 13 11 1 2
Scene Spacing 3.5 9 12 14 7 1

Actors Enter Availability 3.4 13 8 11 7 5
Soft Conflicts 3.1 1 14 18 11 0

Breaks 3.2 5 15 13 6 5
Revise Conflicts 2.8 6 7 11 10 10
Scene Ordering 2.8 1 8 13 11 7

Table 1: For each feature, we report the number of respondents who gave it a
particular score on the Likert scale. The optimization features are highlighted
blue. The utility features are white. The features are sorted by their average
score in descending order.

Prescheduling Manually fix certain scenes to certain timeslots before calcu-
lating an optimal schedule.

Choose Several Schedules Choose from several possible schedules suggested
by the algorithm.

Revise Conflicts Allow conflicts to be edited after the schedule has been
created, possibly leading to rescheduling.

Rescheduling Allow the manager to reschedule all or a subset of the sched-
uled rehearsals.

Integrations With popular calendar products, for example.
Mobile Provide a mobile-friendly interface where the manager and actors can

access the scheduling optimization input and output.

2.2 Survey Results

Practitioners had, on average, 3 productions in the last year that required
them to spend more than 1 hour per week on scheduling rehearsals alone. Each
production, on average, rehearsed for 6 weeks, with, on average, 35 actors and
crew members in each production. In total, practitioners were spending, on
average, 9.6 hours per production doing the scheduling by hand.

In table 1, for each feature we report the number of respondents who gave it
a particular score on the Likert scale. The optimization features are highlighted
blue. The utility features are white. The features are sorted by their average
score in descending order.
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To determine the highest-priority features, we used a t-test to determine
which features were statistically distinguishable from each other. Among the
top five features, for each pair we found p > 0.05. Among the top eight fea-
tures, for each pair we found p > 0.01. On the other hand, Hard Conflicts
and Choose Several Schedules were statistically significantly different from
each other at the p < 0.01 level. Thus, we decided to distinguish the top eight
features as the high priority features. The top optimization features were Hard
Conflicts, Space Availability, and Time Efficiency. The top utility fea-
tures were Manager Enters Availability, Prescheduling, Rescheduling,
Schedule Chunks, and Mobile.

When asked if there where any features not covered in our survey, eight
of the practitioners mentioned accounting for union contracts and labor laws,
especially for shows involving child actors. These rules limit the number of
consecutive hours an actor can work or the number of hours they can work
in a day. While this feature was not applicable in our 14 real-world use cases,
the fact that we omitted it may be a barrier to wider adoption. Aside from ac-
counting for contracts and labor laws, no other missing features were reported
by the practitioners, which suggests that our list of features was reasonably
comprehensive.

From our survey, two results stand out:

– Among the optimization features, we discovered that accounting for actors’
hard conflicts was even more important to the practitioners than making
the schedule temporally efficient for the actors. In the theoretical study of
talent scheduling, conflicts are typically ignored. This result highlights
the need to reformulate the optimization problem for practitioners.

– Many of the utility features we asked about as controls were more im-
portant to the practitioners than optimization features. For example, more
than half of the practitioners responded that having a mobile version of the
scheduling tool is an “extremely important” determinant to whether they
would use the tool. More than half also considered the ability to reschedule
to be “extremely important.”

These survey results indicate that, for practitioners to adopt a scheduling
tool in practice, they expect a highly flexible scheduling tool that addresses
a few core optimization concerns. Out of 44 practitioners, only 14 reported
that they were currently using one or more online tools to help them schedule
rehearsals. Among the 14 who are using one or more online tools, only 1 uses
professional artistic management and planning software specialized for theatre
scheduling. The remaining 13 use Google Forms, when2meet, and Doodle to
collect availability, Excel to organize data, and Google Calendar to provide
visualizations. Given the proliferation of scheduling algorithms and special-
ized scheduling software, we found this number to be surprisingly low. Our
survey results suggest that usability plays a large role in this phenomenon and
may be the largest obstacle preventing practitioners from taking advantage of
scheduling algorithms. We will revisit this idea in later sections.
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3 Integer Programming Formulation

In addition to the aforementioned high-priority optimization features, there
were two departures from the idealized setting we considered “obvious” and
therefore did not ask about in the survey. The first was a distinction be-
tween days and hours. In the idealized setting, it is typical to assume that
the timeslots are contiguous: either consecutive hours on the same day or con-
secutive days. In the practical setting, hours and days must be distinguished.
The second was handling scenes of unequal length. For the sake of formulat-
ing the problem, we assume that the timeslots have equal length and that
scenes require a positive integer number of timeslots. Both of these features
have been recognized as important in previous works. For example, Wang,
Chuang, and Lin [12] make a distinction between days and hours. Sakulsom
and Tharmmaphornphilas [11] make a distinction between days and hours and
also consider rehearsals of unequal length. In our case, we also consider actor
conflicts, which is not addressed in either of the aforementioned works.

3.1 Variables and Objectives

We will use A to denote the set of actors, S to denote the set of scenes, and
T to denote the set of timeslots. We assume that the timeslots have equal
length and are numbered in temporal order. Let D be the set of days. The
timeslots can be partitioned into days: T0, . . . , T|D|. We use the notation `i to
denote the length of scene i: the number of consecutive timeslots which scene i
requires. For most practical instance of the rehearsal scheduling problem,
|A| / 100, |S| / 100, and |T | / 1000.

We define the following binary variables. The variable yij will be 1 if scene
i starts in timeslot j, 0 otherwise. The variable xij will be 1 if scene i is
happening in timeslot j, 0 otherwise. The variable zjk will be 1 if actor k is
present in timeslot j, 0 otherwise. We intentionally avoided introducing any
variable indexed over |S| × |T | × |A|, which would create a prohibitively large
number of variables.

In our formulation, we group hard conflicts and space constraints into
a single utility score for scene i in timeslot j: Rij ∈ R. The distinguishing
property of these features is that the utility of scheduling a certain scene in a
certain timeslot can be calculated independently of the rest of the scenes. On
the other hand, time efficiency depends on the relative positions of all the
scenes.

If a scene must be scheduled at a time when one of the actors in it has
hard conflict, the effect on utility depends on the actor and the scene. For
example, it is better to schedule a 16-person scene with 1 actor missing than
it is to schedule a 2-person scene with 1 actor missing. For the sake of our
experiments, the reward function we use is the fraction of actors who could
attend the whole rehearsal multiplied by the length of the rehearsal. If the only
space available at time j was undesirable for rehearsing scene i, then Rij was
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further multiplied by 1
2 . Formally, let si be the set of actors needed for scene i

and let tj be the set of actors available at time j. Then, for our experiments,

Rij =


`i
|si∩tj |
|si| if desirable space available

1
2`i
|si∩tj |
|si| if desirable space unavailable

−1 if scene i impossible at time j.

Though our experiments use a relatively simple formula for the reward, one
could imagine expressing a much richer set of features. For example, each scene
could be assigned a scalar representing its importance. Then, the reward of
a certain scene in a certain timeslot could be multiplied by the importance
of the scene. Similarly, each actor could be assigned an importance in each
scene and the reward could reflected a weighted average of their availability,
weighted by their importance. We intentionally write our formulation in terms
of “reward” to leave open the possibility of adding these features in the future.

The final feature we would like to capture is time efficiency. Recall that
the hold time is typically defined in settings where all the timeslots can be
thought of as contiguous. In our setting, we consider separate days. In order
to account for this distinction, we need to update our understanding of hold
time.

It is tempting, as a first pass, to simply optimize the total hold time for
all the actors across all the days. However, this results in peculiar behavior.
For example, consider an actor which is in exactly three scenes. Assume that
there are three days worth of timeslots. To minimize their total hold time
across all the days, one solution would be to schedule all three of their scenes
consecutively on the same day. Since the three scenes are consecutive, the actor
experiences no hold time between them. However, an equally optimal solution
would schedule each of the actor’s scenes on a different day. In this solution,
the actor also experiences no hold time on any of the days because their first
and last scene each day is the one and only scene they are called for.

For the above example, it is clear that we need to consider more than just
hold time when deciding if we have used actors’ time efficiently. We resort to
considering two quantities: the total number of days for which each actor is
called as well as the total hold time across all days.

In total, we consider three objectives:

1. maximize reward (accounting for hard conflicts and for space constraints)
2. minimize the number of days called, summed across actors (an aspect of

time efficiency)
3. minimize the hold time, summed across actors (another aspect of time

efficiency)

3.2 Optimizing Multiple Objectives

We considered several options for handling our multi-objective optimization
problem. Ultimately, we opted to treat the objectives hierarchically, leading
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to a three-stage solution process. The first stage finds a solution with the
maximum possible reward. The second stage finds, among all solutions with
maximum reward, the solution which minimizes the sum across actors of the
number of days called. The third stage, calculated separately for each day,
minimizes the total hold time across actors that day.

Our decision to treat the objectives hierarchically was based on our survey
results and our preliminary experiments. In our survey, we found that the
hard conflicts feature was significantly more important to the practitioners
than the time efficiency feature (p < 0.05). In a hierarchical ordering of
objectives, the former feature is prioritized over the latter, consistent with the
survey. When we did try combining the objectives by introducing weights, our
preliminary results suggested that the integer program took a prohibitively
long time to solve. Treating the objectives hierarchically limits the search
space, but makes the integer programs tractable. A reasonable solve time is
crucial for practical usage.

Other researchers have also chosen to solve rehearsal scheduling in
phases. Sakulsom and Tharmmaphornphilas [11] and Wang, Chuang, and Lin
[12] treated rehearsal scheduling as a multi-objective optimization prob-
lem with two objectives, corresponding to our second and third objectives
(days and hold time, respectively). In both cases, they ultimately solved the
problem in two phases: one for each objective. Wang, Chuang, and Lin used
heuristics to produce good feasible solutions in both phases. Sakulsom and
Tharmmaphornphilas used a heuristic in the first phase and then solved an
integer program in the second phase. In this work, we have three phases and
solve them all with integer programming.

3.3 Reward Optimization

The aforementioned reward of scheduling scene i to start in timeslot j is
Rij ∈ R. In this formulation, we find an assignment of scenes to timeslots
that maximizes total reward.

max
∑

i∈S,j∈T
Rijyij (IP1)

∑
j∈T

yij ≤ 1 ∀i ∈ S % Each scene rehearsed at most once.

j∑
j′=j−`i+1

yij′ = xij ∀i ∈ S, j ∈ T % Define the variable x.

∑
i∈S

xij ≤ 1 ∀j ∈ T % At most one rehearsal at a time.

xij ∈ {0, 1} ∀i ∈ S, j ∈ T
yij ∈ {0, 1} ∀i ∈ S, j ∈ T
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Notice that if all the scenes have length `i = 1, then xij = yij , and this
problem becomes a maximum bipartite matching problem between scenes and
timeslots.

On the other hand, if Rij depends only on the scene i, not on the timeslot
j, then

∑
j∈T yij becomes a binary indicator of whether or not scene i gets

assigned to any timeslot. Finding the set of rehearsals which maximize reward
while not exceeding the number of timeslots is equivalent to the Knapsack
problem.

3.4 Time Efficiency Optimization

Daily For the next phase in our optimization formulation, we introduce the
variable δdk. This variable will be 1 if actor k is called on day d ∈ D, 0
otherwise. Let R be optimal objective value found in formulation IP1.

The idea of this formulation is to find, among the solutions with maximum
reward, the one that minimizes the sum over all the δdk.

min
∑

d∈D,k∈A

δdk (IP2)

∑
j∈T

yij ≤ 1 ∀i ∈ S % Each scene rehearsed at most once.

j∑
j′=j−`i+1

yij′ = xij ∀i ∈ S, j ∈ T % Define the variable x.

∑
i∈S

xij ≤ 1 ∀j ∈ T % At most one rehearsal at a time.

zjk =
∑
{i|k∈si}

xij ∀k ∈ A, j ∈ T % Define the variable z.

δdk ≥ zjk ∀d ∈ D, j ∈ Td, k ∈ A % Define the variable δ.∑
i∈S,j∈T

Rijyij = R % Maintain reward.

xij ∈ {0, 1} ∀i ∈ S, j ∈ T
yij ∈ {0, 1} ∀i ∈ S, j ∈ T
zjk ∈ {0, 1} ∀j ∈ T, k ∈ A
δdk ∈ {0, 1} ∀d ∈ D, k ∈ A

Hourly In the previous formulation, we assigned scenes to days. Let Sd be
the set of scenes which were assigned to day d ∈ D and let Rd be the reward
achieved that day. Our final formulation assumes the scenes are fixed to certain
days and refines the hold time within the days. Because the formulations for
each day do not affect each other, they can be solved in parallel.

51

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



Emily Hill, Mark Velednitsky

For the sake of this program, we will only consider the timeslots which fall
on a particular day d. Recall that Td denotes these timeslots. We introduce
two new variables, h+jk ∈ {0, 1} and h−jk ∈ {0, 1}. The variable h+jk will be 1
if and only if actor k is called for a scene at or after timeslot j. The variable
h−jk will be 1 if and only if actor k is called for a scene at or before timeslot

j. Thus, the sum h+jk + h−jk is 2 for actor k if they are rehearsing or held at
timeslot j. Otherwise, the sum is 1.

min
∑

j∈Td,k∈A

h+jk + h−jk (IP3)

∑
j∈Td

yij ≤ 1 ∀i ∈ Sd % Each scene rehearsed at most once.

∑
j′=j−`i+1

yij′ = xij ∀i ∈ Sd, j ∈ Td % Define the variable x.

∑
i∈Sd

xij ≤ 1 ∀j ∈ Td % At most one rehearsal at a time.

zjk =
∑
{i|k∈si}

xij ∀k ∈ A, j ∈ Td % Define the variable z.

∑
i∈Sd,j∈Td

Rijyij = Rd % Maintain reward.

h+jk ≥ zjk ∀j ∈ Td, k ∈ A % h+: if an actor is called.

h−jk ≥ zjk ∀j ∈ Td, k ∈ A % h−: if an actor is called.

h+jk ≥ h
+
j+1,k ∀j ∈ Td, k ∈ A % h+: if an actor will be called.

h−jk ≥ h
−
j−1,k ∀j ∈ Td, k ∈ A % h−: if an actor was called.

xij ∈ {0, 1} ∀i ∈ Sd, j ∈ Td
yij ∈ {0, 1} ∀i ∈ Sd, j ∈ Td
zjk ∈ {0, 1} ∀j ∈ Td, k ∈ A
h+jk ∈ {0, 1} ∀j ∈ Td, k ∈ A
h−jk ∈ {0, 1} ∀j ∈ Td, k ∈ A

3.5 Solutions

The relation among the integer programs is illustrated in figure 2. We solved
the integer programs using the open-source solver COIN-OR Branch and Cut
(CBC) with a one-minute time limit. In practice, on instances of practical size
and structure, IP1 was typically solved to optimality within the time limit,
IP2 typically terminated at the time limit with an optimality gap less than
20%, and IP3 was typically solved to optimality within the time limit.
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IP1
maximize reward

IP2
minimize days called

s.t. fixed reward

IP3: day 2
minimize hold cost

s.t. fixed reward

IP3: day 1
minimize hold cost

s.t. fixed reward

IP3: day . . .
minimize hold cost

s.t. fixed reward

day 1
day 2

day . . .

Fig. 2: A flowchart illustrating the series of integer programs we use to find
a “good” feasible solution to the rehearsal scheduling problem. Arrows
indicate sending a feasible solution from one integer program to the next.

4 Experiments

4.1 Setup

We conducted user studies with a total of 14 practitioners, in two phases. We
helped practitioners generate optimized rehearsal schedules for their shows
using our scheduling system.

A diverse set of shows were tested, including a mix of plays and musicals,
classical and new. Some of the shows used in this phase of testing included
Hamlet, The 25th Annual Putnam County Spelling Bee, Twelfth Night, Sa-
lomé, As You Like It, The Wizard of Oz, A Midsummer Night’s Dream, Next
to Normal, and several independent works. The theater companies were pre-
dominantly located in the San Francisco Bay Area and the Greater Boston
Area.

Phase I: Experimenter-in-the-Loop First, we tested our scheduling optimiza-
tion algorithm by manually entering the scheduling data and constraints for
two practitioners scheduling their respective shows. The practitioners were
asked to evaluate the resulting schedules. Practitioners were not presented
with an interface.

Next, we built a software tool for the practitioners to enter inputs to
the algorithm, themselves. We designed and developed the software with the
high-priority usability features in mind (see section 2.2). In particular, we im-
plemented Manager Enters Availability, Prescheduling, Rescheduling,
and Schedule Chunks. Images of the interface can be seen in figure 3.

In this phase, we used “experimenter-in-the-loop” testing to assist practi-
tioners navigating the interface. The practitioners were prompted to use the
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Fig. 3: Images of the interface in which users entered data for the scheduling
algorithm.

(a) Times (b) Actors

(c) Scenes (d) Rehearsals

interface to generate a rehearsal schedule for a show that they had managed
in the past. Six practitioners participated. In the software interface, the prac-
titioners were prompted to input the following data:

Times General dates and times when rehearsals could happen.
Actors Names and emails of actors.
Scenes The set of actors required for rehearsing a section of the play. See

remark 1.
Rehearsals The duration and actors needed for each rehearsal. See remark

1.

The practitioners were asked to evaluate the quality of the schedule gen-
erated by the algorithm. They were also asked to evaluate their experience of
using the scheduling tool.

Phase II: Experimenter-out-of-the-Loop After iterating our interactive soft-
ware prototype, incorporating the feedback we collected from Phase I, we
sent the updated software prototype to six participants to complete the task
of scheduling rehearsals for their respective shows. Participants were asked to
perform the scheduling independently, and on their own time. They were asked
to evaluate the resulting schedule generated by the algorithm, as well as the
experience of using the scheduling software.

4.2 Results

Participants responded very positively to the schedules produced by the al-
gorithm, and were relieved by the ease of automating scheduling. Notably, in
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Phase I of the experiment, all participants were able to complete scheduling
rehearsals for the entire production in 2 hours, in contrast to the average 9.6
hours spent scheduling each production using their current methods.

Phase I: Experimenter-in-the-Loop All the participants reported that they
were satisfied with the optimized schedules that the algorithm generated. Par-
ticipants said that the automatically optimized rehearsal schedules were sim-
ilar to schedules they manually created. Participants further stated that de-
viations from their manually produced schedules were either insignificant (for
example, swapping similar rehearsals) or reasonable (for example, scheduling
some rehearsals at better times at the expense of other rehearsals). All partici-
pants finished creating rehearsal schedules for the entirety of their shows under
2 hours, a significant reduction from 9.6 hours on average spent scheduling per
production as reported in the survey.

The participants were allowed to give free-form feedback. Several com-
mented on the time and energy saved. Others commented on the quality of
schedules generated. Responses included:

– “I cannot tell you how exciting it is to have all the scheduling done for
me.”

– “It personally would have saved me a lot of work.”
– “The schedules are clearly better than last year.”
– “Your algorithm really saved us time and stress.”
– “This is really cool. If people can put their conflicts in, it’s, like, no work.”
– “The workflow can be a little simpler, but how the tool automatically

created this perfect schedule was cool. I see a lot of potential in this tool.”

One limitation of the user study was not including the time of rescheduling
rehearsals due to changes in actor availability.

Phase II: Experimenter-out-of-the-Loop This turned out to be the more chal-
lenging testing session for users. One user confessed they in fact did not finish
scheduling, saying that “[The software] is too complicated.” While the prac-
titioners who did finish scheduling were satisfied with the resulting schedule
(one practitioner called the results “delightful”), they were significantly less
satisfied with the process than the users who received experimenter assistance
in Phase I. The practitioners expressed concern that the data entry was cum-
bersome and lacked flexibility. One practitioner said they would “probably not
use it again.” Another said they would “rather manually schedule by them-
selves,” because of familiarity and flexibility.

The only difference between Phase I and Phase II was the guidance of
researchers in navigating the interface, in addition to minor improvements to
the interface. Experimenters’ guidance turned out to be fundamental to the
practitioners’ success and positive experience using the scheduling tool.

Additionally, our user studies revealed that users have varying levels of
trust in computer-generated results. Participants were curious about yet skep-
tical of the schedule generated by the computer throughout the data entry
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process. All eight users from Phase I expressed the desire to tweak the out-
come of the initial computer-generated schedule. Giving users the flexibility
to make free-form changes is important. The ability to freely manipulate and
potentially re-purpose the outcome returns agency back to the users, which
positively contributes to users’ experience of interacting with the scheduling
software.

5 Final Remarks

In designing a scheduling system, our goal was to capture human intuition for
what makes a good schedule in an integer programming formulation. Our user
studies suggest that we achieved that, generating schedules which felt “good”
to practitioners.

Although our tool was adequate from an optimization standpoint, a lot
more work would need to be done outside of optimization in order to make
the tool appealing to non-technical practitioners. In our survey, we discovered
that certain utility features were as popular as, and sometimes more popular
than, the optimization features.

A practical scheduling tool needs to support scheduling demands of varying
intensity, to improve significantly or at least be compatible with practitioners’
existing workflows, and be considerate of users’ comfort level with foreign
software interfaces.

Through our experiment, we found that the best practice for building a
usable scheduling tool is to involve users in every cycle of the development,
collecting their feedback and iterating. Rather than defer this to be handled
by engineers and designers, we believe this process should start as early as
developing an optimization formulation that incorporates practitioner input
and is aware of their non-optimization needs.

References

[1] RM Adelson, JM Norman, and G Laporte. “A dynamic programming
formulation with diverse applications”. In: Journal of the Operational
Research Society 27.1 (1976), pp. 119–121.

[2] Felix Bomsdorf and Ulrich Derigs. “A model, heuristic procedure and
decision support system for solving the movie shoot scheduling problem”.
In: Or Spectrum 30.4 (2008), pp. 751–772.

[3] Kellogg S Booth and George S Lueker. “Testing for the consecutive
ones property, interval graphs, and graph planarity using PQ-tree al-
gorithms”. In: Journal of computer and system sciences 13.3 (1976),
pp. 335–379.

[4] Tai Chiu Edwin Cheng, Bertrand Miao-Tsong Lin, Hsiao-Lan Huang,
et al. “Talent hold cost minimization in film production”. In: (2017).

56

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



REFERENCES

[5] TCE Cheng, JE Diamond, and BMT Lin. “Optimal scheduling in film
production to minimize talent hold cost”. In: Journal of Optimization
Theory and Applications 79.3 (1993), pp. 479–492.

[6] Uriel Feige and James R Lee. “An improved approximation ratio for
the minimum linear arrangement problem”. In: Information Processing
Letters 101.1 (2007), pp. 26–29.

[7] Maria Garcia de la Banda, Peter J Stuckey, and Geoffrey Chu. “Solving
talent scheduling with dynamic programming”. In: INFORMS Journal
on Computing 23.1 (2011), pp. 120–137.

[8] Andreas Holzinger. “Usability engineering methods for software devel-
opers”. In: Communications of the ACM 48.1 (2005), pp. 71–74.

[9] Anna-Lena Nordstrom and Suleyman Tufekci. “A genetic algorithm for
the talent scheduling problem”. In: Computers & Operations Research
21.8 (1994), pp. 927–940.

[10] Hu Qin et al. “An enhanced branch-and-bound algorithm for the tal-
ent scheduling problem”. In: European Journal of Operational Research
250.2 (2016), pp. 412–426.

[11] Noppadon Sakulsom and Wipawee Tharmmaphornphilas. “Scheduling a
music rehearsal problem with unequal music piece length”. In: Comput-
ers & Industrial Engineering 70 (2014), pp. 20–30.

[12] Sin-Yi Wang, Ying-Ting Chuang, and Bertrand MT Lin. “Minimizing
talent cost and operating cost in film production”. In: Journal of Indus-
trial and Production Engineering 33.1 (2016), pp. 17–31.

57

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



A Double-Horizon Approach to a Purely Dynamic
and Stochastic Vehicle Routing Problem with
Delivery Deadlines and Shift Flexibility?

Nikolaus Frohner · Günther R. Raidl

Abstract We are facing a purely dynamic and stochastic vehicle routing prob-
lem with delivery deadlines motivated by a real-world application where orders
arrive at an online store dynamically over a day to be delivered within short
time. Pure dynamism is given since we do not know any orders in advance,
whereas the stochastic aspect comes into play by having estimates for the
hourly numbers of orders. The goal is to satisfy the daily demand by con-
structing closed routes from a single depot to the customers given a set of
drivers with a predefined shift plan and the hourly demand estimates as input
while first minimizing due time violations and then labor and travel costs.
Labor costs are subject to optimization since the end times of shifts have a
certain amount of flexibility and a decision has to made whether to send home
a driver earlier than planned or to extend the shift.

In this work, we present a novel double-horizon approach based on the shifts
and the hourly demand estimation. Within the shorter horizon we optimize
the routes for the orders currently available whereas within the longer horizon
we extrapolate until the end of the day to determine target shift end times
for the drivers. Furthermore, we devise a route departure time strategy that
balances between route quality and risking due time violations. The routing
is performed by a classical adaptive large neighborhood search. We consider
artifical instances and compare the results for the online problem with those for
the offline scenario where all orders are known from the beginning. We observe
superior performance of our approach as compared to fixed route departure
time and driver send home strategies.

Keywords Dynamic and stochastic vehicle routing problem · double-horizon
approach · adaptive large neighborhood search
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1 Introduction

Motivated by a real-world application where customers place orders at an
online store to be delivered within a few hours, we introduce a specific vehicle
routing problem (VRP) variant called Purely Dynamic and Stochastic Vehicle
Routing Problem with Delivery Deadlines and Shift Flexibility. Orders arrive
dynamically over the day, and each order is due only a couple of hours after
arrival, where the specific due times vary and depend on the orders’ types.
These orders are picked at a single depot and are subsequently available for
delivery to the customers by drivers with predefined shifts.

The goal is to assign the orders to the drivers and perform the routing in a
way to avoid or minimize due time violations. Drivers perform multiple routes
over the day and for each route a decision has to be made when to start it.
This is crucial since after the departure of a driver, the corresponding route
cannot be changed anymore. As secondary objective, the labor costs, which
are determined by the actual shift end times, and the travel times, determined
by the performed delivery routes, are to be minimized. The shift end times are
subject to some flexibility and may be ended earlier or extended to account
for the uncertainty of the actual load.

In particular, we need to account for the strong dynamism of the problem
by making use of the stochastic information known in advance. As such, an
estimation of the demand for each hour over the day is available upfront.
To link this information to the shifts, the time-dependent average number
of orders drivers can handle per hour—the driver performance—needs to be
estimated. In this work, we combine well-known adaptive large neighborhood
search for vehicle routing [10,13] with a double horizon approach [8] to handle
dynamism and stochasticity. In the short horizon planning, we present a driver
performance dependent route departure time strategy—more efficient routes
are started earlier than inefficient routes, where improvement is still expected.
To avoid sending drivers home too early, we look ahead until the end of the
day—the large horizon—by solving a simplified assignment problem on the
expected orders without concrete routing to predict target shift end times for
the drivers.

In Section 2 we discuss related work. The formalization of the different
problem variants (offline, point in time, online), the solution representation,
and the objective function is presented in Section 3. Short horizon routes
construction is done by adaptive large neighborhood search using classical in-
sertion and regret heuristics and a diverse set of destroy operators as briefly
discussed in Section 4. We present the details of our driver performance esti-
mation in Section 5 which is crucial for our departure time strategy (Sect. 6)
and our double horizon approach (Sect. 7). The latter is also used to enable
informed shift ending strategies as described in Section 8. In the computa-
tional study (Sect. 9), we compare the double-horizon approach with fixed,
less sophisticated strategies, on artificial instances with different load patterns
(business day vs. weekend) and shift plans (generous vs. tight vs. shortage).
We observe strong advantages of the former. We conclude in Section 10.
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2 Related Work

For general overviews on methods to solve dynamic and stochastic VRPs, see
the surveys by Ritzinger and Puchinger [12], Pillac et al. [9], and Psarafitis et
al. [11]. Many existing approaches apply periodic or continuous re-optimization
of the problem for the current time and essentially ignore information on ex-
pected orders. In our context such an approach would not work well as guar-
anteed delivery times are rather short and started routes cannot be adapted
anymore (with respect to the orders they fulfill). Thus, adequately exploiting
the estimations of expected orders is of crucial importance.

To handle these uncertainties existing approaches typically fall into one of
two categories: those based on sampling and those based on stochastic mod-
eling [9]. As their name suggests, sampling strategies incorporate stochastic
knowledge by generating scenarios based on realizations drawn from suitable
random variable distributions. Each scenario is optimized by solving the im-
plied static and deterministic (i.e., offline) problem variant. Then a consensus
solution is typically derived from all scenario solutions, which is actually ap-
plied in the next time step, until a re-optimization takes place. The advantage
of sampling is its relative simplicity and flexibility on distributional assump-
tions, while its drawback is the massive generation and required solving of
scenarios to accurately reflect reality. On the other hand, approaches based on
stochastic modeling integrate stochastic knowledge analytically. They try to
formally capture the stochastic nature of the problem and are usually highly
technical in their formulations and require to efficiently compute possibly com-
plex expected values. Typically, only strong abstractions from the real world
allow for stochastic modeling. Applied methods to solve such stochastic mod-
els include Markov models and stochastic dynamic programming. In the case
of our problem, precise and flexible enough analytical models unfortunately
appear to be out of reach.

In the following we review the most relevant existing works we have found
in conjunction with our specific VRP.

Bent et al. [3] were one of the first describing an event based model to solve
a dynamic VRP. In their multi plan approach (MPA) a set of possible rout-
ing plans is maintained at any time and updated at certain events. There is
one distinguished “best” plan which is determined by an appropriate selection
function. The events are new customer requests, vehicle departures according
to a current distinguished plan, the availability of newly generated plans, and
the timeout of plans. The authors further extend the MPA by sampling to a
multiple scenario approach (MSA) in order to obtain more robust solutions
concerning the stochastic aspects. A number of scenarios is created by adding
randomly sampled artificial orders, these scenarios are solved, and then a con-
sensus solution is derived for the original online problem at a certain time.
A tabu search is used for actually solving the occurring subproblems. We es-
sentially also follow the fundamental concept of the event based model of the
MPA, although with just one current solution.

60

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



Nikolaus Frohner, Günther R. Raidl

Hvattum et al. [7] propose another sampling scenario-based approach in
conjunction with a rather simple hedging heuristic.

Gendreau et al. [6] describe a tabu search with adaptive memory for a
dynamic vehicle routing problem. Essentially, an MPA-like event model is
used in conjunction with tabu search and the problem is re-solved whenever
new information is available. Stochastic aspects are not considered here, but
a focus lies on an effective parallelization.

Ropke and Pisinger [13] and Pisinger and Ropke [10] proposed Adaptive
Large Neighborhood Search (ALNS) for more general vehicle routing problems,
which is nowadays widely used as framework for a large variety of optimization
problems. ALNS is appreciated for its practical efficiency as well as robust-
ness on many occasions. The main idea of ALNS is to repetitively destroy a
current candidate solution partially and repair it in a sensible way. Both are
done by using sets of different basic operators, which are typically randomized.
Improved solutions are always accepted as new current ones, while worse so-
lutions are only accepted according to a Metropolis criterion. The application
probability of the individual destroy and repair operators are adapted over
the iterations based on their successes in previous iterations. ALNS is today
among the most often applied metaheuristics for VRPs in general, and we
find it also most useful as core optimization technique for solving our routing
problem, see Section 4.

Azi et al. [1] consider a VRP with a particular focus on multiple routes
per vehicle, as we also have to do. A major difference to our problem is that
here the focus is on deciding upon the acceptance of requests. The solution
approach is an ALNS that is in several aspects similar to those from Ropke and
Pisinger. Azi et al. [1] extend this work towards the dynamic problem variant.
Stochastic sampling is applied to account for unknown expected orders.

Schilde et al. [14] describe a variable neighborhood search metaheuristic for
a dynamic dial-a-ride problem. The authors also apply sampling for dealing
with the stochastic aspects. In their variable neighborhood search the shaking
moves bear some similarities with the destroy and repair operations of ALNS.

Mitrović-Minić et al. [8] describe a double horizon approach for solving
a dynamic pickup and delivery problem. A large horizon is considered for
maintaining routes in a state to be able to easily respond to future dynamically
appearing requests, while a short horizon is considered for the actual goal
to minimize the route lengths based on the so far known requests. While
the considered problem is quite different to ours, we adopt the basic idea of
considering two planning horizons in our double horizon approach in Section 7.

3 Problem Formalization

We distinguish between three problem variants: the offline problem with full
knowledge of the day in advance (OFF), the dynamic problem at a specific
time t̃ (DYN-t̃), and the full dynamic problem for a whole day (DYN-DAY).
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tavlv1
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t

Fig. 1 Visualization of order-related times of an example route r = {0, v2, v3, v1, 0}. tavlv ≤
trelv ≤ tduev holds for all orders: first it is placed by the customer (tavlv ), then it is picked from
the warehouse (trelv ) and ready for delivery by a driver, and then due (tduev ). Note that orders
that are placed later may be due earlier. The earliest route departure time is bound from
below by the latest release time of the corresponding orders. For this particular example
τr ≥ trelv3

must hold.

3.1 Full-Knowledge Offline Problem (OFF)

Here all orders of the day are known in advance together with their release
times, i.e., the times the orders have been picked in the warehouse and are
ready for delivery by the drivers. Although this problem variant is not what
we are confronted with in reality, it is nevertheless interesting as its (optimal)
solution provides a baseline of what might ideally be achieved in the online
problem. We denote the set of all orders by V , with n = |V |, and the cor-
responding release times by trelv , ∀v ∈ V . Moreover, we are given due times
tduev , ∀v ∈ V , which are related to a promised maximum delivery duration
starting from the time tavlv the order v was placed by the customer. Fig. 1 vi-
sualizes the order-related times of an example route consisting of three orders.

Furthermore, for all relevant vehicles u ∈ U , with m = |U |, planned shift
time intervals [qstartu , qendu ] and earliest shift ends q0u ∈ [qstartu , qendu ] are provided.
Lastly, expected travel times δ(v, v′) from location v to location v′, where
v, v′ ∈ V ∪ {0} with 0 representing the warehouse, are given. These travel
times include average stop times at the customers, average times for loading
a vehicle at the warehouse, and postprocessing times when returning to the
warehouse. We further assume that the triangle inequality holds w.r.t. the
travel times and that they are constant throughout the day.

Solution Representation. We have to plan the drivers’ routes, the route de-
parture times, and the drivers’ flexible shift end times. Hence, a candidate
solution is a tuple 〈R, τ, q〉 where

– R = (Ru)u∈U denotes the ordered sequence of routes Ru = {ru,1, . . . , ru,`u}
to be performed by each vehicle u ∈ U , and each route r ∈ Ru is an ordered
sequence r = {vr0 = 0, vr1, . . . , v

r
lr
, vrlr+1 = 0} with vri ∈ V, i = 1, . . . , lr,

being the i-th order to be delivered and 0 representing the warehouse at
which each tour starts and ends,

– τ = (τr)r∈Ru,u∈U are the (planned) departure times of the routes, and
– q = (qu)u∈U are the shift end times of the vehicles.

The time at which the i-th order vri of route r, i = 1, . . . , lr, is delivered is

a(r, i) = τr +
i−1∑
j=0

δ(vrj , v
r
j+1). (1)
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Fig. 2 Visualization of a solution for an artificial instance with 22 vehicles. The x-axis
denotes the time and the discrete y-axis the drivers’ shifts. The whole bar indicates the
actual shift duration. The green triangle indicates the earliest shift end time for each driver,
where excess labor time contributes to our considered costs. The red triangle depicts the
planned shift ending, after which no route can be started, but the last route may end
arbitrarily late. The distinct green bars stand for routes and contribute to the travel time
part of our objective function. If the latter is shaded light green, the route contains at least
one tardy order, which can be observed around hour 15. The remaining orange of the shift
bars denote waiting time of the driver at the depot. The blue stars denote the target end
shift times as determined by the large horizon planning in the beginning of the day.

The total duration of a route r ∈ Ru of a vehicle u ∈ U is

d(r) =

lr∑
i=0

δ(vri , v
r
i+1), (2)

and the route therefore is supposed to end at time τr + d(r).
Let τmin(r) = maxi=1,...,lr t

rel
vri

be the earliest feasible starting time of a
route r, which corresponds to the maximum release time of the orders served
in the route. Furthermore, let τmax(r) be the latest starting time without
violating any due time, i.e.,

τmax(r) = min
i=1,...,lr

tduevri
−

i−1∑
j=0

δ(vrj , v
r
j+1)

 . (3)

Feasibility. A solution is feasible when

– each order v ∈ V appears exactly once in all the routes in
⋃
u∈U Ru,

– each route r ∈ Ru, u ∈ U , is started in the planned shift time of the
assigned vehicle, i.e., τr ∈ [qstartu , qendu ],

– and not started before all corresponding orders are released, i.e., τr ≥
τmin(r),

– the routes in each Ru, u ∈ U start at increasing times and do not overlap,
i.e., τru,i

+ d(ru,i) ≤ τru,i+1
, i = 1, . . . , |Ru| − 1,
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– and the actual shift end time is not smaller than the finishing time of
the last route (if there is one) and the minimum shift time, i.e., qu ≥
max(q0u, supr∈Ru

(τr + d(r))), u ∈ U .

Objective. The primary goal is to avoid tardiness or distribute it evenly among
the customers. The secondary goal is reduce labor and travel costs. This leads
to the following objective function to be minimized

f(〈R, τ, q〉) = L

( ∑
r∈Ru,u∈U

lr∑
i=1

max(0, a(r, i)− tduevr
i

)2, γ ·
∑
u∈U

(qu − q0u) +
∑

r∈Ru,u∈U

d(r)

)
.

(4)

L denotes the lexicographic combination of two terms, which are a quadratic
penalty for the tardiness of deliveries and a linear combination of the sum of
labor and travel costs. More precisely, the latter is calculated as the sum of
the actual shift durations above the minimum shift times q0u weighted by a
factor γ and the sum of travel times.

In a real-world comparison of results, it is also worthwhile to view it as
a multi-objective optimization problem. A small increase in tardiness may be
acceptable, if it comes with a substantial reduction of costs.

3.2 Dynamic Problem at a Specific Time t̃ (DYN-t̃)

This problem variant is actually the one that needs to be iteratively solved
during the whole day, for increasing current time t̃. It extends OFF by having
as additional input the current time t̃ and the expected number of orders ω̂(t)
that become available in the time intervals [t, t+ 1h) for all relevant business
hours. Moreover we assume to have knowledge about the distribution of order
types w.r.t. the promised delivery durations. The set of all orders V is reduced
to those which are already available at time t̃ and whose delivery has not yet
started. The set of vehicles U is reduced to those whose shift has not been
finished, and shift start times are updated to expected return times of vehicles
that are currently on a tour. The route construction must now additionally
consider these unknown future orders in an appropriate way. The ultimate
goal is to lead to an optimal solution w.r.t. the full dynamic problem below.

3.3 Full Dynamic Problem (DYN-DAY)

This is the actual problem to be solved from the point-of-view of the whole
day. Time is considered to continuously increase over the whole relevant time
horizon, expected numbers of future orders are known as above, but each
concrete order becomes available only at the availability time tavlv , ∀v ∈ V .
The decision on each route r ∈ R must be fixed with only the knowledge
available up to the routes respective departure time τr. An example solution
of a DYN-DAY instance with 22 vehicles is depicted in Fig. 2 as a bar chart
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displaying the waiting times (orange), routes (green), and routes with tardy
orders (light green) of the drivers. Stars show the target shift end times derived
from our initial large horizon planning (Sect. 7).

More specifically, we solve the successive DYN-t̃ instances every time an
order is released:

t̃ ∈
{
t | ∃v ∈ V : t = trelv

}
(5)

Having obtained a solution for a time t̃, we extract any routes that start
before the next value for t̃ in the above sequence, adopt these routes for the
final solution of DYN-DAY, and remove all the orders served in these routes
from any further consideration.

4 Routes Construction and Optimization

To be suitable for a real-time application, an important property that an
optimization method must exhibit is a good anytime behavior : a somehow
reasonable heuristic solution must be found very soon (within seconds), and
over time the solution should continuously be improved up to (or close to)
optimality. In other words, the optimization can be interrupted almost at any
time and a reasonable solution with respect to the invested time is available.
We achieve this by using a carefully designed Adaptive Large Neighborhood
Search (ALNS) [9,13].

ALNS heuristics. As construction heuristics to insert orders into either an
empty solution or to repair a partial solution in the ALNS, we use the well-
known insertion and regret-k heuristics as described in [10]. We distinguish
between the zero-tardiness and tardiness regimes. In a two-stage approach, we
first seek to insert an order without introducing additional tardiness, which can
be checked in constant time with caching of suitable slack values for existing
orders and routes. If this is not possible, we search for an order position with
the smallest sum of squares increase of tardiness, which is computationally
more demanding by a factor of O(n).

Our destruction heuristics are mostly adopted from Pisinger and
Ropke [10], Ropke and Pisinger [13], Shaw [15], and Azi et al. [1] and suitably
adapted to our problem. There are two kinds of destruction heuristics, those
that remove a certain number of orders from routes and those that remove
a certain number of whole routes. More specifically, we use random order,
random route, related order, related route, worst order, and worst and related
order removal.

Shift End Times. The actual shift end times qu for the vehicles are set to
max(q0u, supr∈Ru

(τr+d(r))), i.e., for each vehicle u to the end of the last route
or the earliest possible shift end time, whichever comes later. In Section 7, we
introduce the large horizon planning, where we estimate desired shift ends for
the vehicles in advance so that we can satisfy the expected workload. Since in
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the objective function we penalize labor time after the earliest possible shift
end times q0, we grant vehicles that are below their desired shift end time
q̃u > q0u a labor time bonus that equalizes the incurred labor time costs up
until q̃u—otherwise, the insertion heuristic would avoid assigning orders to
vehicles after their earliest possible shift end q0u, in case there is no tardiness
yet and other vehicles not close to their shift end are available. The labor time
bonus is implemented by using the augmented objective function

f̃(〈R, τ, q〉)) = f(〈R, τ, q〉)− γ ·
∑
u∈U

min(qu − q0u, q̃u − q0u). (6)

During the optimization, the route departure time is always set to the earliest
possible time. Afterwards, we are free to postpone the routes up to the latest
time within the departure time slacks of the routes so that the objective value
is neither increased by tardiness nor by labor costs.

5 Driver Performance Estimation

For both an informed route departure time strategy and our large horizon
approach, we need to estimate the driver performance of a given hour. It is
the average time needed to serve an order. It is strongly related to the expected
duration of all routes involved to serve the customers at the considered time
interval divided by the number of customers. We introduce this as a function
φ : R→ R, depending on the load λ. We define the load λ to be the expected
number of orders due in a given hour.

A classical result by Beardwood et al. [2] shows that the expected length
of an optimal traveling salesperson tour with n randomly sampled cities given
some geometry with area A grows with k

√
An. k is an empirical constant

depending on the spatial distribution and the metric. This result is extended
to capacitated vehicle routing problems by Daganzo [4] and refined by Figliozzi
[5], from which we adapt the following model to explain φ(λ)

φ(λ; km, kl) ≈ km +
kl√
λ+ 1

. (7)

km corresponds to constant costs occurring for each customer like the stop time
at the customer. kl relates to the empirical k from [2] and accounts together
with (λ+ 1)−1/2 for the expected travel time to a customer. We shift the load
by one to avoid divergence at zero load. As we can see, it is a function that
decreases with the square root of the load. As a more flexible model, we further
suggest the following inverse power law

φ(λ; km, kl, α) ≈ km +
kl

(λ+ 1)α
. (8)

To check the validity of these models in our setting and tune the parameters, we
create ten artificial instances each for loads starting from 0.5 up to 20 in steps
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Fig. 3 Mean order delivery times φ in minutes with standard errors over ten instances for
each load value λ ∈ {0.5, 1.0, . . . , 20, 21, . . . , 60} with fitted curves for the two and three-
parameter models. The three-parameter model seems to explain the region of little load
λ ≤ 10 better than the two-parameter model.

of 0.5 and further in steps of 1 up to 60, i.e., to one order due per minute. The
geometry is the unit disk with a central depot, Euclidean metric, and vehicles
driving a constant pace of 20 minutes per unit distance. Furthermore, constant
stop times at the customers, loading times when leaving the warehouse, and
postprocessing times when returning to the warehouse are added. Orders arrive
randomly throughout a whole day at a given constant rate λ sampled from a
Poisson process following a uniform spatial distribution. Optimization at each
DYN-t̃ is done for 60 seconds using ALNS. Sufficient drivers are available so
that no tardiness occurs, and the drivers wait to start their routes as long as
possible. For each instance, we average over all routes the time needed to serve
a customer.

In Fig. 3 we see a scatter plot of the mean order delivery times including
standard errors (N = 10) over the different loads. Weighted least squares fits
of the models are displayed. Both models explain the data starting from load
λ ≥ 10 similarly well with weighted R2 values of 0.97 and 0.99. For low-load
regions λ ≤ 10, the model with the inverse power as an arbitrary parameter
lies closer to the means.

6 Departure Time Strategies

In the dynamic problem, at every time t̃ we construct and optimize the routes
for the drivers. After that, we have to decide when these should be started.
A departure time window [τ earliestr , τ latestr ] is attributed to each route, within
which the departure time τr of the route may be set while maintaining a
feasible solution and not increasing the objective value. Setting τr < τ earliestr

or τr > τ latestr makes the solution either infeasible or increases tardiness, labor,
or travel costs. This decision is crucial since routes cannot be adapted anymore
after they have been started.
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Two naive strategies can immediately be devised by either always starting
the route at τ earliest or at τ latest. τ latest seems favorable in most situations since
not yet started routes may later still be adapted in order to more efficiently
include newly emerged orders as opposed to the earliest strategy where in the
extreme case a route is immediately started with just one order. However,
experiments have shown that the start-latest strategy is not always the better
strategy, since we may run into tardiness at a later time when working at or
shortly before critical utilization and letting vehicles wait instead of delivering
orders.

A more sophisticated approach takes into account the current performance
of a route, measured by its number of minutes per order dOr , i.e., the route
duration divided by the number of orders served. The main idea is: the better
the performance of a route, the closer we can set its departure time τr towards
τ earliestr , the worse, the closer towards τ latestr , so that there is a performance-
dependent time for improvement by further incoming orders. As we have seen
in detail in Section 5, the performance depends on the load by an inverse power
law.

We assume a Gaussian distribution of dOr ∼ N (φ(λ), σ2
φ(λ)) and set the

departure time of a route to

τr(d
O
r , λ) = τ earliestr + (τ latestr − τ earliestr ) · Φ

(
dOr − φ(λ)

σφ(λ)

)
, (9)

where Φ is the cumulative normal distribution function. For example, when dOr
corresponds exactly to the expected mean order delivery time φ(λ) in the given
load situation, the departure time of r will be set to (τ earliestr + τ latestr )/2, the
middle of the route departure time slack. We estimate σφ(λ) by calculating
sample standard deviations from our experiments described in the previous
section.

We will refer to the three different strategies as τ -earliest, τ -latest, and
τ -route.

7 Double Horizon Approach

This approach adopts from Mitrović-Minić et al. [8] the idea of considering in
the optimization two planning horizons simultaneously, a short horizon and a
large horizon. In the Large Horizon Planning (LHP), which we always perform
as first step, we consider a strongly simplified approximate problem variant of
DYN-t̃ where, in addition to all available requests, also all the expected future
requests for either the whole day or at least several hours into the future. The
primary goal is to make a rough plan on the utilization of the vehicles and
recognize times where we might exceed the available capacity or have enough
time to finish vehicle shifts earlier. A detailed routing is not done in the LHP.
The short horizon problem corresponds to our definition of DYN-t̃ so far but
utilizes an adapted objective function that includes additional terms defined
by the LHP’s results in order to meet the long-term goals as closely as possible.
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In our case decisions on the labor time to be used beyond the minimum q0u for
each vehicle are most critical in the long-term in order to avoid later deliveries
becoming tardy due to insufficient driving resources for the given workload.

We therefore define and solve the following LHP subproblem at time t̃ in
order to derive target shift end times q̃u for each vehicle u ∈ U . We consider
as V all currently relevant orders of the current DYN-t̃ plus expected orders
V exp for the remaining day. These expected orders are artificially created ac-
cording to the estimated numbers of orders becoming available per hour ω̂(t),
equidistantly spaced over each hour. For each of these orders we further derive
a due time randomly based on the distribution of expected order types and
their promised maximum delivery times.

Let z : R+ → R+ be a function that estimates the average shift duration
needed to serve one order v ∈ V ∪V exp within the current hour of t̃ and a few
subsequent hours, assuming a reasonable routing and an average number of
available orders. The basis for z is the mean order delivery time φ(λ) derived
from the routes with latest departure time strategy as presented in Section
5. To account for a slight increase due to waiting times in the depot and an
intermediate departure time strategy, we introduce an additional factor ζ ' 1.
With Λ(t) being the load at hour t, we then calculate a weighted average to
estimate the average shift duration

z(t̃) = ζ ·
∑t̃+ρ

t′=t̃
Λ(t′) · φ(Λ(t′))∑t̃+ρ

t′=t̃
Λ(t′)

, (10)

with ρ corresponding to three hours in our implementation. We make the
strongly simplifying assumption that any order v can be independently served
by any available vehicle within time z(t̃) from trelv onward. Each vehicle’s shift
is split into successive time slots of duration z(t̃), and in each of these time
slots one order can be served. This implies that we do not allow arbitrary
start times to serve orders but only times that are multiples of z(t̃) away from
a vehicles’ shift start time (or t̃). We do not have a strict last slot, i.e., in
principle further orders to be served might always be appended to a vehicles
shift. An instructive visualization of the LHP’s view on an example DYN-t̃
instance is provided in Figure 4.

A solution to our LHP is a complete assignment of all the orders V ∪V exp to
vehicle slots. As actual delivery time of an order we consider the respective time
slot’s middle point, i.e., the time slot’s start time plus z(t̃)/2. The objective
function corresponds to our main objective function (4), but as we do not
consider routing the last travel time term is omitted.

This LHP is heuristically solved by a greedy assignment procedure, in
which orders are assigned in increasing due-time always to the earliest feasible
time slot of a vehicle that increases the objective the least. In case of ties,
a vehicle u ∈ U whose end of the shift exceeds q0u the least, i.e., where the
vehicle’s excess labor time is smallest, is chosen. This aspect automatically
balances the deviations from the planned shift times among the vehicles if
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t̃ q0

q̃
t

u

Fig. 4 View on an example DYN-t̃ problem instance as seen by the large horizon planning.
The x-axis represents the time, discretized by time slots of the average expected shift time
needed to deliver an order z(t̃). The drivers that are still available at or after t̃ are stacked on
the y-axis. Blue rectangles indicate orders that have already been delivered or are en route.
Brown rectangles represent greedily assigned orders, either real (available at the moment)
or expected up until the end of the planning horizon. The maximum of the earliest shift end
time q0u and the latest assigned order define for each driver the target shift end time q̃u. For
the last four drivers q0 is exceeded, since otherwise tardiness would have arisen. Note that
unassigned slots may occur if no more orders are ready for delivery at that time.

there are no particular other reasons such as avoiding tardy orders. Further
ties are resolved randomly by a random processing order of the vehicles.

The obtained shift end times of this solution, i.e., the end times of the last
used time slots of each vehicle, are finally used as target shift end times q̃u,
for all u ∈ U in the short horizon optimization, i.e., the ALNS from Section 4.

This is achieved by augmenting objective function (4) to

f̃(〈R, τ, q〉)) = f(〈R, τ, q〉) + γ ·
∑
u∈U

Qu (11)

with

Qu = −min(qu − q0u, q̃u − q0u). (12)

This non-positive term can be seen as bonus that exactly compensates any
arising labor time costs above q0u up to the target time q̃u for each vehicle
u ∈ U . Thus, the time up to q̃u can be used “for free”. Note that the factor
γ by which the bonus is multiplied is the same as by which the labor time is
weighted in (4).

8 Shift Ending Strategies

In the online problem, we also have to decide if a shift should be ended by
sending a driver (vehicle) u ∈ U home, providing this is allowed, i.e., t̃ ≥ q0u,
u is in the depot, and no more routes are planned for u, or if the driver has to
wait at the depot to possibly receive further orders. Again, two naive strategies
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are immediately available: The first option is to send a vehicle u home as early
as possible, i.e., after its last so far planned route or at q0u, whichever comes
later. This is also the default of the insertion heuristic. The other extreme is
the latest strategy that waits until qendu in any case, even if the last route ends
before qendu . The earliest strategy seems to be an attractive choice, since we can
save labor costs and during peak hours, it is likely that a vehicle has already
a next route planned during its current route, therefore it is not sent home
prematurely when arriving at the depot, if there is still enough work to do.

A more sophisticated approach makes use of the estimated shift end times
q̃ provided by the LHP. The earliest shift end time is then modified to be
q̃u − d̃, where d̃ is a threshold duration of an efficient route. The rationale is
that if a vehicle cannot start a somewhat efficient route that ends before its
target shift end q̃u, it is better to send it home.

We will refer to the three different strategies as q-earliest, q-latest, and
q-LHP.

9 Computational Study

We conducted all our experiments on Intel Xeon E5-2640 processors with
2.40 GHz in single-threaded mode and a memory limit of 8 GB. We imple-
mented our approach as a prototype in Python 3.7, being aware that an im-
plementation in a compiled language would be substantially faster and have a
smaller memory footprint. We consider six different instance classes, each with
20 instances: Artificial instances1 on the Euclidean unit disk as described in
Section 5 using either a business day (BD) or a weekend (WE) load profile with
generous (GE), tight shift planning (TI), and with a shortage (SH) of drivers.
The idea is to observe the transition from a more generous shift planning to a
tighter one and simulating a driver being absent on short notice where in the
latter cases more tardiness is expected to occur. Furthermore, in the generous
case, dynamically ending shifts earlier is expected to have more impact where
in the tight case shifts are more likely to be extended by starting long routes
shortly before the ending.

We aim at comparing the performance of the naive earliest and latest
strategies with the more sophisticated LHP and driver performance based
route departure strategy on those DYN problem instances. In each case, we
apply the ALNS with a limit of 1000 non-improving iterations and addition-
ally a 60 seconds time limit for route optimization at each arriving order. This
should be consistent with a real-time setting, where orders may arrive every
minute during peak-time or on weekends and routes already including them
should occasionally be started within a minute. Without LHP and driver per-
formance estimation, we are restricted to naive earliest and latest strategies
regarding the departure time of a route and the early shift termination. LHP
extrapolates until the end of the horizon to set desired shift ending times for

1 https://github.com/nfrohner/pdsvrpddsf
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Algorithm 1: Simulated DYN Problem Solver with ALNS and LHP.

Input: Orders V , drivers U , shift starts qstart, earliest shift ends q0, planned shift
ends qend, hourly expected number of orders ω̂, travel time matrix δ, mean
order delivery time φ, efficient route threshold duration d̃.

Output: Solution 〈R, τ, q〉 with routes R, route departure times τ , and actual shift
end times q for the whole day.

1 V deliv ← {};
2 Uhome ← {};
3 R′ ← ()u∈U , τ

′ ← ()r∈R′ , t̃′ ← 0, q̃ ← qend;

4 〈R, τ, q〉 ←
〈
R′, τ ′, q0

〉
;

5 foreach t̃ ∈
{
t | ∃v ∈ V : t = trelv

}
∪ {∞} do

6 foreach (u, r) ∈ R′ : t̃′ ≤ τ ′r < t̃ do
7 V deliv ← V deliv ∪ {vr1 , . . . , vrlr};
8 〈R, τ, q〉 ← 〈R, τ, q〉 ⊕ (r, τ ′r);

9 qstartu ← u’s return time at depot after t̃;

10 end

11 Uhome, q ← SENDHOME(t̃, t̃′, Uhome, U \ Uhome, qstart, q0, qend, q̃, d̃);

12 V avl ← {v ∈ V \ V deliv : tavlv ≤ t̃};
13 q̃ ← LHP(t̃, V avl, U \ Uhome, ω̂, φ, qstart, q0, qend);

14 〈R′, τ ′, q〉 ← ALNS(t̃, V avl, U \ Uhome, qstart, q0, qend, q̃, δ);
15 τ ′ ← DEPART(R′, φ);

16 t̃′ ← t̃;

17 end
18 return 〈R, τ, q〉;

each driver, using an estimation of the average driver performance in the win-
dow of the current and the upcoming three hours. The target shift ending
times may be before the planned shift ends to send drivers home early or after
them so that extending shifts is favored via the augmented objective function.

In Algorithm 1 we list a high-level pseudo-code of the simulated DYN
problem solver, combining the previously explained approaches based on the
LHP and route performance. The main loop goes over all times t̃ where an
order is released, where the first inner loop checks whether routes have been
started between the last and the current t̃. If so, they are added to the current
solution, the corresponding orders are removed, and the drivers’ shift starts
are set to their return times at the depot. Afterwards, drivers are sent home,
if their target shift end time reduced by the efficient route threshold q̃ − d̃
passed and they have no further routes planned. Then the route construction
and optimization begins with the large horizon planning to update the q̃. It
further continues with the ALNS—the optimization workhorse—that creates
routes for the currently available and not yet delivered orders. Finally, the
departure time of the planned routes is set according to the route performance
strategy (more efficient routes are planned to start earlier).

In Table 1, we present the main results of our computational study. We
compare for the different combinations of our approaches means and standard
deviations of the number of tardy orders ntardy, the root mean squared error
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Fig. 5 Comparison of the root mean square error of the tardiness in minutes, the travel
time duration, and the excess labor time of different solution strategies (without offline
solution) on six different instances classes with 20 instances each. We observe that the more
sophisticated strategies based on LHP and the route performance decreases the tardiness
at the cost of carefully introducing additional travel time (regarding which τ -latest is best)
and labor time (where q-earliest is best).

(RMSE) of the tardiness in minutes, the total travel time in hours, the labor
time exceeding q0u in hours, the average route duration d̄, and the average route
performance (labor time to serve an order without waiting time) in minutes
dOr . The offline (full knowledge of the day) results (OFF) where we applied
ALNS to convergence with a limit of 1000 non-improving iterations without
additional time limit provide a performance baseline. All the other results
are for the DYN-DAY problem variant and we see that the offline baseline is
somewhat out of reach, which is not too surprising due to the substantially
restricted knowledge that can be exploited in the online variant. Despite hav-
ing used a lexicographic optimization approach, where distributing tardiness
evenly and reducing it was the single most important objective, we analyze the
results in the sense of a multi-objective optimization problem. Small amounts
of tardiness for a few customers may in practice be acceptable when real costs
may be substantially reduced. In Figure 5, we visualize the results by box-
plots of the tardiness, travel time, and labor time, for the different solution
strategies (excluding the offline problem) on the six different instance classes.

We observe that the τ -latest strategy provides the best route performances
and therefore smallest travel costs but sometimes runs into troubles regarding
tardiness, where a τ -earliest strategy would have been beneficial. Similarly, the
q-latest strategy provides the most shift time resources allowing to reduce tar-
diness, as opposed to the q-earliest strategy. The goal of τ -route is to balance
between the extremes of the τ determination strategies considering the load de-
velopment of the day. Likewise, the q-LHP strategy should provide additional
shift resources regarding the flexibility of shift endings times only when neces-
sary. We observe that the τ -route strategy sacrifices a slight amount of route
quality in exchange for substantially less tardiness. Likewise, the LHP care-
fully provides additional labor time to be used to reduce tardiness. Combining
both strategies results in a reasonable trade-off over all the instances classes,
where a decision maker may also select a suitable combination of strategies
given the load and shift structure of the day.
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Table 1 Offline problem performance (OFF) and different solution strategies applied to
20 artificial instances for each configuration using either a business day (BD) or a weekend
(WE) load profile with either generous, tight, or shift planning with a driver shortage.

ntardy RMSE [min] dur [h] lab [h] d̄ [min] dOr [min]

mean std mean std mean std mean std mean std mean std

load shift solving strategy

BD generous τ -earliest, q-earliest 4.500 4.536 0.680 0.798 98.134 3.580 1.491 1.069 56.425 4.315 18.386 0.692

τ -earliest, q-latest 3.850 4.771 0.592 0.795 98.087 3.984 11.940 0.698 55.930 3.707 18.372 0.631

τ -latest, q-LHP 6.250 6.257 1.107 1.208 88.221 4.447 2.685 1.199 74.935 2.832 16.512 0.426

τ -latest, q-earliest 7.600 6.065 1.157 1.091 87.716 4.443 1.673 0.889 74.745 2.818 16.420 0.479

τ -latest, q-latest 5.900 5.937 1.028 1.237 87.980 5.210 11.974 0.722 75.460 2.792 16.463 0.574

τ -route, q-LHP 4.400 4.604 0.841 1.134 89.369 4.568 2.197 1.560 71.340 2.113 16.728 0.483

τ -route, q-latest 4.350 4.782 0.757 1.082 89.956 4.241 12.036 0.797 70.060 2.398 16.839 0.379

OFF 0.550 1.572 0.056 0.174 78.897 4.763 0.377 0.479 64.170 2.039 14.760 0.384

shortage τ -earliest, q-earliest 19.950 16.804 3.991 4.966 91.863 4.294 8.334 3.843 63.415 4.985 17.259 0.468

τ -earliest, q-latest 19.100 13.726 3.381 2.568 92.763 4.305 14.775 2.426 62.930 4.941 17.430 0.533

τ -latest, q-LHP 14.800 10.928 2.705 2.915 88.099 4.742 12.262 3.854 74.640 3.749 16.544 0.350

τ -latest, q-earliest 26.200 14.207 4.179 2.747 87.507 5.044 9.946 4.296 74.355 4.007 16.430 0.370

τ -latest, q-latest 22.737 16.562 3.551 2.820 87.524 5.038 15.406 2.073 72.126 3.019 16.505 0.426

τ -route, q-LHP 15.450 11.019 2.546 2.525 89.483 4.717 11.454 4.103 71.270 3.763 16.806 0.388

τ -route, q-latest 18.150 11.864 2.988 2.338 89.992 4.691 16.304 2.145 70.045 3.622 16.903 0.375

OFF 2.050 5.826 0.255 0.721 81.655 4.358 4.671 3.230 57.595 1.676 15.336 0.400

tight τ -earliest, q-earliest 14.158 10.673 2.720 2.928 93.582 3.530 6.319 2.803 62.416 4.261 17.507 0.746

τ -earliest, q-latest 10.950 8.003 2.847 4.480 94.496 3.263 14.236 1.601 61.630 3.886 17.670 0.725

τ -latest, q-LHP 14.300 11.855 2.139 1.923 89.265 5.296 9.496 3.458 73.180 2.846 16.667 0.477

τ -latest, q-earliest 17.150 9.544 2.959 2.341 88.868 5.074 7.920 2.934 72.865 2.211 16.593 0.457

τ -latest, q-latest 13.900 9.754 2.466 2.179 88.732 4.822 14.810 1.636 70.945 2.330 16.571 0.514

τ -route, q-LHP 8.950 6.117 1.843 2.098 90.030 4.238 8.883 2.960 70.370 2.580 16.818 0.452

τ -route, q-latest 10.105 7.880 2.028 2.542 90.265 4.403 14.728 1.231 68.816 1.937 16.870 0.509

OFF 0.700 2.904 0.115 0.512 82.371 5.380 3.273 2.645 58.400 2.307 15.374 0.420

WE generous τ -earliest, q-earliest 2.400 3.267 0.420 0.539 145.071 3.794 1.213 1.660 62.140 3.102 17.008 0.504

τ -earliest, q-latest 1.750 2.900 0.273 0.435 145.130 3.561 15.889 0.853 61.985 3.286 17.021 0.634

τ -latest, q-LHP 2.850 2.661 0.701 1.056 132.071 4.851 2.024 1.885 76.835 2.059 15.477 0.343

τ -latest, q-earliest 2.850 2.978 0.745 1.112 132.159 5.094 1.715 1.753 76.580 2.008 15.486 0.334

τ -latest, q-latest 1.600 2.137 0.358 0.531 132.161 4.962 16.099 0.859 76.015 1.727 15.488 0.335

τ -route, q-LHP 2.450 2.837 0.455 0.551 134.841 4.713 1.820 1.657 73.420 2.295 15.800 0.329

τ -route, q-latest 1.650 2.641 0.271 0.411 134.682 4.460 16.286 1.248 73.945 1.934 15.787 0.435

OFF 0.000 0.000 0.000 0.000 118.698 5.720 0.197 0.407 67.455 2.253 13.902 0.291

shortage τ -earliest, q-earliest 12.950 9.801 1.743 1.817 139.469 3.321 9.636 2.564 67.160 3.392 16.167 0.597

τ -earliest, q-latest 7.400 5.623 1.475 2.305 139.888 3.335 19.844 1.440 66.135 2.164 16.215 0.571

τ -latest, q-LHP 9.900 7.440 1.077 0.923 132.993 3.421 12.833 2.534 77.185 1.991 15.411 0.350

τ -latest, q-earliest 14.250 9.107 1.527 1.578 132.510 3.574 11.427 2.400 75.295 1.975 15.354 0.380

τ -latest, q-latest 11.700 9.985 1.632 1.878 132.087 3.426 20.397 1.485 75.850 2.883 15.305 0.320

τ -route, q-LHP 8.100 8.534 0.924 1.048 135.573 3.432 12.724 3.585 74.550 1.673 15.711 0.413

τ -route, q-latest 7.400 8.068 1.042 0.898 136.989 3.011 22.970 1.615 73.765 1.808 15.875 0.371

OFF 0.350 0.988 0.032 0.130 123.384 3.617 4.860 2.077 61.880 1.426 14.296 0.330

tight τ -earliest, q-earliest 12.200 16.938 2.372 3.017 141.820 3.805 8.029 3.336 64.295 3.578 16.608 0.526

τ -earliest, q-latest 8.350 7.707 1.558 1.924 142.144 4.282 19.164 1.851 64.055 3.246 16.643 0.528

τ -latest, q-LHP 7.050 8.587 1.121 1.442 133.109 5.952 11.178 4.118 76.335 2.057 15.575 0.261

τ -latest, q-earliest 10.850 10.246 2.109 2.531 132.394 5.840 9.369 3.762 75.115 1.923 15.490 0.285

τ -latest, q-latest 8.500 8.237 1.955 2.667 132.156 5.971 19.720 1.794 73.955 2.546 15.462 0.311

τ -route, q-LHP 6.050 6.739 1.113 1.610 135.414 5.522 10.216 4.080 73.805 1.910 15.848 0.365

τ -route, q-latest 5.050 6.700 1.021 1.536 136.518 4.566 21.582 1.895 73.285 2.089 15.980 0.347

OFF 0.800 2.118 0.079 0.189 122.279 6.193 3.716 2.530 62.540 1.653 14.303 0.285

For τ -latest, q-LHP we use ζ = 1.2 to convert the route performance values
to the average time to serve an order as described in Section 7, and for τ -route,
q-LHP ζ = 1.15. This is only a naive transformation rule. Further research
is needed regarding the driver performance estimation, especially since the
waiting time, the route departure strategy, and the driver performance have
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an immanent cyclic dependency. The parameters used for the three-parameter
inverse power law model to estimate the route performance φ(λ) given the
load λ are tuned by means of least squares optimization to kl = 23.144, km =
3.951, α = 0.174, with a 25% estimated constant relative standard deviation.
For the driver send home strategy, d̃ is set to 55 minutes.

10 Conclusions

We considered a purely dynamic and stochastic vehicle routing problem with
delivery deadlines and shift flexibility arising from a real-world application.
Orders arrive at an online store throughout the day, regarding which we have
stochastic knowledge by means of hourly estimates. They have to be delivered
within only a few hours by drivers deployed at a single depot. The goal is to
reduce or evenly spread tardiness if not avoidable among the customers and to
minimize travel and labor costs. Drivers may be sent home early or have their
shifts extended to some degree to account for the uncertainty of the load.

Our proposed double-horizon approach is able to effectively address the
dynamism and stochasticity of the problem. The large horizon planning with
its simplified order-to-drivers assignment is able to derive meaningful target
shift end times. These are exploited in the short horizon planning—the actual
routing performed by ALNS—by augmenting its objective function, releasing
additional shift resources in an informed way.

Another important aspect is to determine the route departure times, where
neither the naive earliest nor the latest strategy suffices. We devised a more
balanced strategy that estimates the expected route performance (average
time per order in a route) depending on the current load and start routes
earlier that are already close to the desired performance and later when the
performance is worse.

The combination of both approaches leads to superior performance over
the naive strategies or allows for trade-offs regarding substantially reduced
travel and labor time versus a slight amount of more tardiness on artificially
created instances for different load profiles (business day vs weekend) and shift
plans (generous vs tight vs shortage).

Further research is needed to improve the estimation of the driver perfor-
mance over the day, especially for real delivery areas in a city, also studying the
impact of traffic. This is also a basis for the accuracy of the LHP. A difficulty
lies in the cyclic dependency between the driver performance estimation and
the route departure strategy, where we used a bootstrapping mechanism by
fitting a function on idealized randomized instances, incorporating the driver
waiting times by a constant factor over the whole day to pragmatically resolve
this in a first step.
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a column generation approach to solve the model’s LP relaxation by pricing
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1 Introduction

Toll systems are an active research area, especially the aspect of toll road
pricing, partly in consideration of congestion on roads. When designing toll
systems a common approach is to utilize bi-level programming models as pre-
sented in [1] or [2]. Toll pricing to reduce traffic congestion is studied by [3] or
more recently by [4].

We consider a rather neglected operational aspect of toll systems, namely
the enforcement of the toll. But planning of control resources and in particular
the rostering of employees, that conduct the enforcement, is not limited to the
case of a toll. It is an important challenge in many real-world applications,
e.g., police inspections, ticket inspections or other security related tasks. Here,
we focus on the enforcement of the truck toll on German motorways and main
roads, a network of around 50k kilometers. All trucks weighting at least 7.5
tonnes must pay a distance based toll. Fares differ according to the vehicle
weight, the number of axis and the emission class. Introduced in 2005 on
motorways and extended in 2018 to all main roads, it makes one of the most
important contribution to the budget of public roads maintenance. Hence, it
is needed to organize the limited control resource as effectively as possible.

Since the system is barrier-free, toll evasion is basically possible. The Ger-
man Federal Office for Goods Transport (BAG) is responsible for the enforce-
ment of the toll. It is conducted by a combination of traffic control gantries
or devices for automatic stationary camera control and spot-checks by more
than 400 mobile control inspectors. The spot checks are carried out as part
of control tours by approximately 250 control teams of one or two inspectors.
Due to practical aspects the teams are divided into more than 20 regions.

In an on-going research and development project with the BAG we develop
methods and a software tool to compute optimal control tours and crew ros-
ters of the inspectors. We have called this integrated tour planning and duty
rostering problem the Toll Enforcement Problem (TEP). At BAG the plan-
ning is organized as monthly planning problem. Two or four sections of the
network are controlled during a mobile tour each for a fixed time interval of
approximately 2 or 4 hours.

In the TEP a duty corresponds to a control tour starting at a certain
time in some depot. After some hours the tour ends in the same depot. The
tours are not given in advance, they have to be created by tasks consisting
of controlling a certain section of a motorway (or more precisely a subarea of
the toll network) in a corresponding time interval. A tour is a combination
of such tasks. The main difference to standard rostering lies in the integrated
optimization of tours and rosters. This integration is necessary because it is
unclear what work has to be done beforehand and crews can only conduct
controls in the area of their home depots. Therefore, it is important to prevent
the planning of tours for which no crew is available.

The TEP was presented inter alia in [5] where an extensive description
of the modeling power of the approach is given, including an analysis of the
bi-criterion character of the TEP and computational results that analyze the
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complexity of real-world instances. In the literature there are different ap-
proaches to solve inspection problems that are similar to our application. The
authors of [8] consider the problem of fare evasion. Optimal control strate-
gies are derived by game theory. While our focus is rostering, another recent
report [9] considers the generation of duties for railway security teams by con-
catenating inspection tasks on trains or platforms.

In this paper, we propose a column generation approach to solve the TEP.
In a standard approach we solve the LP relaxation of the TEP IP by an
arc generation method. After the root node LP is solved to optimality the
restricted IP is solved with the set of variables generated during column gen-
eration in the root node. In fact, we develop a heuristic since feasibility is not
guaranteed.

Our main contribution - that can be seen as a modification of the standard
approach - is the adoption of a method called Coarse-to-Fine. This method
was first used by the authors of [6]. They introduced a coarsening approach
to the Railway Rolling Stock Rotation Problem. It is also presented in [7].
The basic idea is to introduce a coarsening projection on the variables of the
original model. It leads to a coarser model with significantly less variables.
Then the problem is solved via column generation on the coarse level. We
will show that the coarse reduced costs overestimate the fine reduced costs.
Afterwards, again the IP is solved with the columns generated in the root
node. The major benefit in comparison to other heuristic approaches is that
we are able to provide a quality measure.

The paper is structured as follows: In Section 2 we shortly define the TEP
and recapitulate a corresponding formulation. Thereafter, in Sections 3, 4
and 5 the Coarse-to-Fine approach is presented. Finally, Section 6 discusses
computational results for both approaches and Section 7 concludes the paper.

2 A Multicommodity Flow Formulation

The TEP is formulated by a standard multi-commodity flow model with some
extensions in order to incorporate the control tours. It is based on a scheduling
graph G = (D,A)). There, the set D corresponds to duties for the inspectors
plus artificial source and sink nodes. If two duties u ∈ D and v ∈ D can be
performed successively by the same inspector we construct an arc (u, v) ∈ A
in G. Additionally, there are arcs (ŝ, v) ∈ A leaving the source node ŝ ∈ D and
arcs (u, t̂) entering the sink node t̂ ∈ D, respectively. Hence, a feasible duty
roster corresponds to a ŝ-t̂-path in G. The model uses binary variables zd to
decide if a control tour d ∈ D is chosen. In addition, there are binary flow
variables xma that are one if arc a ∈ A is used by inspector m ∈M .

Typical constraints for the tour variables are section covering and section
capacity constraints. The first guarantee each section to be visited and the
latter that not more than one control team conducts a control on a section
during the same time. For the rostering part classical flow value and flow con-
servation constraints are combined with different types of resource constraints.
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Coupling constraints link the tour variables with the roster graph. For more
details we refer to our earlier work [5].

The overall goal is to compute a reward-maximal set of control tours. The
reward of a section depends both on its amount of traffic depending on the
time and the day of the week and on the quota of fare evaders in the past. In
addition, costs on the sequence arcs represent penalties for soft rule violations.
With this model a lot of rules can be modeled implicitly in the scheduling
graph. A typical example are minimum rest times. There exist also other rules,
e.g., monthly working hours, that are modeled as resource constraints.

A major task is to find a compromise between quality and quantity of con-
trols as well as providing fair roster schedules for the inspectors such that the
acceptance of the optimized schedules can be increased. The modeling power
of Mixed Integer Programming and the ability of rapid model modifications
in order to cope with moving targets have been an important instrument to
solve real-world instances. For practical reasons the tours consist of two parts
only (for an efficient control it is required to stay for some time in an area).
Therefore, the main complexity of the model stems from the rostering part.
The incorporation of the tours can be seen as an extension of the classical
rostering flow model. According to the requirement that inspectors can only
conduct controls in their regional area, the number of tours and roster sequence
variables is still in a range that allows a complete tour generation.

Since the beginning of 2014, the algorithm and software based on this
model and the commercial MIP solver CPLEX is in production to schedule
all toll enforcement inspectors of BAG in Germany. In contrast to many other
rostering problems, model TEP is directly solvable by a general-purpose solver
such as CPLEX if the number of arcs and tours does not exceed, say, 2 mil-
lion. But in some cases the resulting MIP formulation becomes too large and
intractable or slow even for commercial MIP solvers. In addition the vast ma-
jority of arcs and tours will not be part of a feasible solution. This motivated
us to develop a heuristic approach and transfer the idea of dynamic variable
generation methods and Coarse-to-Fine to this application.

3 Applying an LP-based heuristic

The main contribution is a heuristic based on Linear Programming (LP) to
solve the integrated problem. An important precondition is the fact that the
reduced costs can easily be computed in the TEP, since all tours and duty
sequence arcs are generated in advance. The heuristic uses a Coarse-to-Fine
approach to solve the LP-relaxation of the TEP by column generation. The
basic idea of Coarse-to-Fine is to identify unprofitable clusters of variables
and to focus on the parts that promise an improvement of the objective value.
In this concept our original model is called the fine model. We introduce a
coarsening projection for the variables of the fine model. Several variables
from the fine model are mapped to a single variable in the coarse model.

80

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



An LP-based heuristic for Inspector Scheduling

The general definition is as follows: We are given a linear program

max pTx, s.t.Ax ≤ b, x ≥ 0

with J as the index set of the variables. We introduce a coarsening projection

[·] : J → [J ]

that maps J onto a smaller index set [J ], where some variables are aggregated.
Therefore, the coarse model has significantly fewer variables than the fine
model. Furthermore, for a matrix A let Aij be the entry in the i-th row and
in the j-th column. We introduce the coarse matrix [A] ∈ RI×[J] by defining
for each j ∈ [J ] the coarse column vector [A]·j as follows:

[A]ij :=([A]ij1, [A]ij2)

:=(min {Aik | k ∈ J : [k] = j},max {Ail | l ∈ J : [l] = j}).

The coarse objective coefficients are defined by [p]j := maxk∈J{pk | [k] = j}
for all j ∈ [J ]. A similar approach where rows were aggregated was introduced
to the Railway Rolling Stock Rotation Problem in [6].

The trick is now to solve the fine problem by a column generation algorithm
that operates mainly on the coarse level. To price the variables in the coarse
model, a proper definition of the coarse reduced cost is necessary. Let α ∈ RI

be an optimal dual solution for the restricted master problem in the fine layer.
Then let us define how to multiply such a vector with a coarse matrix:

x̂ ∈ Ra, ŷ ∈ (R,R)a, a ∈ N, a ≥ 1

that

x̂T ∗ ŷ :=

a∑
i=1

min {x̂iŷi1, x̂iŷi2}

where ŷi = (ŷi1, ŷi2). Then we can define the coarse reduced cost as:

[τ ]j := [p]j − α
T ∗ [A]·j , j ∈ [J ].

We are now ready to state the crucial property that the coarse reduced costs
overestimate the (fine) reduced costs.

Lemma 1 (Coarse Reduced Cost Lemma) The coarse reduced cost over-
estimate the (fine) reduced cost:

[τ ]j = [p]j − α
T ∗ [A]·j ≥ pk − α

T ·A·k = τk ∀k ∈ J : [k] = j, j ∈ [J ].

Proof Since [p]j = maxk∈J{pk|[k] = j} it holds that [p]j ≥ pk. It also holds

that [A]ij1 ≤ Aik ≤ [A]ij2 and with the ∗-operation we get αT ∗ [A]·j =∑
i∈I min {αi · [A]ij1, αi · [A]ij2} ≤

∑
i∈I αi ·Aik = αT ·A·k. Hence, [p]j −αT ∗

[A]·j ≥ pk − αT ∗ [A]·j ≥ pk − αT ·A·k.
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4 Coarse-to-Fine column generation

The bounding property of the coarse reduced cost is used to design a Coarse-
to-Fine column generation algorithm. Briefly, it works as follows: In the first
place, we only have to compute the reduced costs of the coarse variables. If
these have a positive value then the reduced costs of the corresponding fine
variables will be computed afterwards. Note that we maximize and search for
positive reduced cost in this setting. It is described in Algorithm 4.1. There
we denote the master problem by MP and the restricted master problem by
RMP.

1 Input feasible RMP with start columns J0, coarsening projection [·] and finite set
of total columns J (not part of the RMP yet)

2 Output RMP with columns J ′ and an optimal solution for the MP

3 init J ′ = J0
4 solve RMP with columns J ′

5 compute coarse reduced costs [τ ]

6 let Ĵ := {j ∈ [J ] : [τ ]j > 0}
7 if Ĵ 6= ∅ then
8 compute fine reduced costs τk ∀k ∈ J : [k] ∈ Ĵ
9 let J∗ := {k ∈ J \ J ′ : [k] ∈ Ĵ : τk > 0}

10 if J∗ 6= ∅ then
11 add J̃ ⊆ J∗ to J ′, J̃ 6= ∅
12 goto 4

13 end

14 end

Algorithm 4.1: Coarse-to-Fine column generation algorithm.

The input of Algorithm 4.1 is a feasible RMP and a given coarsening pro-
jection [·]. In line 4 we solve the current RMP with columns J ′. In the first
iteration these are only the initial columns J0 that ensure feasibility. As a
next step we compute the coarse reduced costs in line 5. If there are no coarse
reduced costs with positive value, the algorithm terminates. Otherwise we com-
pute the fine reduced costs for all fine columns which are projections of the
coarse columns with positive coarse reduced costs. If none of the fine columns
have positive reduced costs, the algorithm finishes as well. But if there are fine
columns with positive reduced cost, then we add at least one of them to the
model, jump back to line 4 and repeat the same procedure again.

5 Coarse-to-Fine for the TEP

We consider a problem specific approach for the coarsening projection. Namely,
for the TEP, the coarsening is processed on the arc variables. Let us consider
the scheduling graph G = (D,A) introduced in Section 2. To prepare the
coarsening projection for each day and possible tour, all duty nodes that have
similar starting times are aggregated.
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We divide a day into blocks of two hours and create coarse nodes (one
for each tour, i.e., for each feasible sequence of sections) representing these
blocks. The motivation is basically that the expected traffic does not change
dramatically during neighboring hours as opposed to considering the whole
day. Thus, a coarse decision when a mobile tour starts (or ends) has already
a considerable significance.

This coarsening projection on the nodes induces a coarsening projection
on the arcs: We aggregate all arcs into a coarse arc that share the same coarse
tail node and the same coarse head node. Therefore, for each coarse arc we
introduce a coarse arc variable and map the variables belonging to the fine
arcs that are aggregated in the current coarse arc to the corresponding coarse
variable. In addition, we use a slightly modified definition of coarse reduced
costs that takes the particular structure of the TEP scheduling graph into
account. All constraints, that correspond to the sequence arc variables, only
depend on the corresponding tail and head nodes.

The Coarse-to-Fine approach handles only the inspector arc variables. An
artificial tour variable is maintaining feasibility in the beginning and we do
one step of column generation on the tour variables in each iteration of the
Coarse-to-Fine algorithm. Algorithm 4.1 is applied to the root node LP and
afterwards the IP of the fine model is solved with the columns generated during
the Coarse-to-Fine algorithm.

We compare this approach with a standard column generation approach,
called Price & Branch, to solve the model’s LP relaxation by pricing tour
and roster arc variables. We can deviate this approach from Algorithm 4.1 by
omitting lines (5− 7). Then, we again compute an integer feasible solution by
restricting to all variables that were priced.

6 Computational Results

In this section we present several computational results for the two presented
heuristic approaches. We show how the column generation algorithms decrease
the model size of several industrial instances and that both heuristics (Price-
and-Branch and Coarse-to-Fine) lead in almost all cases to feasible solutions
with a high quality. We aggregated duty nodes sharing the same day, the same
control tour, and starting in the same time block, as described in Section 5.
The time blocks have a length of two hours.

Table 1 gives the basic data for each instance. Every instance represents a
planning scenario for a control region and comprises a time horizon of several
weeks. The length of a section control equals four hours. We set a time limit
of one day for solving the IP. We performed all computations on an Intel(R)
Xeon(R) CPU E5-2670 v2 machine with 2.50GHz and 10 CPU cores. For all
computations we used CPLEX (version 12.6.0.0) as LP and IP solver.

There is a broad range of instances from different regions, with a varying
number of duty types and fixed duties. Instance I3 deviates from the other
instances in that it is only generated for testing purposes. It covers only a plan-
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Inst. Region Inspectors Sections Fixed Duty Rows Columns
Duties Types

I1 r1 21 28 308 8 16469 164775
I2 r2 21 13 206 8 14583 347128
I3 r4 6 28 0 8 2242 27160
I4 r6 22 22 64 9 20727 705410
I5 r3 24 28 137 14 31758 2008131
I6 r5 20 20 37 16 32080 2178483

Table 1 Key characteristics of the TEP instances

ning horizon of one week. Instances I1, I2 and I3 can be solved to optimality
without column generation within one day.

For each instance we ran three different variants. The first, the default IP
run, is called noCG. The second is the Price-and-Branch approach and the third
Coarse-to-Fine. Table 2 presents in columns two, three and five the number of
variables of the original (master) problem, the number of variables priced by
Algorithm CG, and by algorithm CtF, respectively. In column four and six the
relation of the restricted LP for CG and CtF to the noCG is shown in percent.
As expected the number of priced variables is much smaller compared to the
number of variables in the original model. As an example, instance I4 has in
total around 705,000 variables. The restricted problem after running the Price-
and-Branch algorithm has only 97,000 columns. In case of Algorithm 4.1 the
column size even reduces a litte more to 84,000. Instance I5 has even a higher
reduction with more than 90%.

Table 3 gives the results of solving the TEP IP both with the full model and
with the columns generated by the column generation algorithms. Columns
two to four give the solution of the IP run and columns five to seven the
objective values either when the time limit is reached or if optimality is proven.
We remind that an optimal solution of the IP restricted to the generated
variables is not necessary optimal for the original problem but feasible.

On average, we achieved a considerable speed-up with all versions. For
instance I1 the decrease of running time is extreme. For I3 there is in fact
no need for column generation. Fortunately, for all instances feasible solutions
could be found when solving the IP with the generated columns. Furthermore,
all instances finished before reaching the time limit for CG and CtF. Raising

Instance noCG CG % CtF %

I1 164775 31898 19.4 26366 16.0
I2 347128 60371 17.4 60082 17.4
I3 27160 2749 10.1 2788 10.3
I4 705410 97170 13.8 83921 11.9
I5 2008131 158497 7.9 156550 7.8
I6 2178483 143860 6.6 127646 5.8

Table 2 Model reduction measured by number of variables in the different LP relaxations
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Time IP Objective
Instance noCG CG CtF noCG CG CtF

I1 29,168.24 58.78 9.73 385,744 379,987 381,568
I2 15,573.29 171.86 131.76 776,919 768,434 766,635
I3 0.48 0.08 0.15 65,392 65,392 65,392
I4 86,408.14 1807.30 482.98 492,754 478,913 475,269
I5 86,400.93 49,973.54 14,930.88 530,344 518,593 517,169
I6 86,414.98 32,005.40 79,280.61 538,749 521,458 520,542

Table 3 Comparison of solution time and quality for the different methods

the time limit for I4 to I6 would lead to a longer running time for noCG and
therefore to a smaller proportion in terms of running time for CG and CtF. On
the other hand, despite not finishing, version noCG yields good IP solutions. In
all cases, the IP best incumbent values of noCG are better (to a small fraction)
than the ones by the heuristics. But in many cases (e.g. I1 or I5 ) the differences
are small enough to claim that our approaches yield good integral solutions.
The results give a strong indication that CtF yields the smallest models and
in many cases the best running times.

7 Conclusion

We presented two heuristics based on linear programming for a rostering prob-
lem in the area of toll enforcement on German motorways. We tackle the TEP
by a standard multi-commodity flow model with some extensions in order to
incorporate the control tours. One heuristic, called Price-and-Branch, is a col-
umn generation approach to solve the model’s LP relaxation by pricing tour
and roster arc variables.

The main contribution is a coarse-to-fine approach. There, several variables
from the original model, called fine model, are mapped to a single variable in an
aggregated model, the coarse model. First, we presented a generic approach to
general linear programs and applied it to the TEP. We discussed the important
property that the coarse reduced costs overestimate the fine reduced costs.
Then column generation is performed on the coarse level. In both cases (Price-
and-Branch and Coarse-to-Fine), we compute an integer feasible solution by
restricting to all variables that were priced.

For both heuristic procedures we showed that feasible solutions with high
quality can be computed even for large industrial instances. An important
issue for future research is to solve instances with a large number of duty
types (> 16) or a minor control duration that could not be solved so far.
Another idea would be to add an additional algorithmic step to the Coarse-to-
Fine, like the coarse reduction [6] in the railway setting, to compute additional
suitable columns by fast combinatorial algorithms for a faster convergence.
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Abstract This work introduces a multithreaded solving methodology for lo-
cal search based metaheuristics. It runs a single local search that spreads move
evaluations across multiple threads. To preserve incremental score calculation
(delta evaluation) capabilities, which are essential for the performance of lo-
cal search methods, the child threads reproduce the step of the main thread
in a method we named step chasing. The proposed method is implemented
within OptaPlanner, a Java-based open source solver, and can thus be used
by anyone. The effectiveness of the method is demonstrated using three meta-
heuristics (Tabu Search, Simulated Annealing, Late Acceptance) on four dif-
ficult combinatorial optimization problems: the nurse rostering problem, the
vehicle routing problem, the curriculum course timetabling problem and the
cloud balancing problem. Extensive experiments are performed using up to
16 threads with a total of 5550 runs, with significant speedups realized when
more threads are available to the solver. All results are compared with a sin-
gle threaded implementation, as well as a multi-walk approach. The greatest
speedups take place with respect to the nurse rostering problem.

Keywords Parallel local search · Multithreading · Incremental solving ·
Metaheuristics · Open source

1 Introduction

Metaheuristics - and more specifically local search - are frequently used to
solve difficult combinatorial optimization problems. In order to solve real-world
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problems and find high quality solutions, the speed at which these algorithms
can calculate constraint and fitness scores is generally an important factor.
The ability to accommodate large-scale problems is also crucial. A frequently
applied technique for improving the scaling behaviour of local search is incre-
mental score calculation (also known as delta evaluation). While this technique
brings an important scaling factor, parallelization on multi-core machines and
multi-node clouds enables further scaling. An opportunity which typically has
been overlooked in the academic literature. Perhaps because combining paral-
lelization and incremental score calculation poses some significant challenges.

Nevertheless, several works proposed a parallel local search method. [12]
proposed multiple-walk and single walk parallel local search methods and ap-
plied it to the traveling salesman problem, the steiner tree problem and two
scheduling problems. An overview of parallel metaheuristic strategies can be
found in [5,1,11,6].

As highlighted by [2], most metaheuristic frameworks and libraries with
parallelization focus on evolutionary algorithms. Therefore, very few frame-
works support parallel local search or trajectory-based metaheuristics. More-
over, none of them support incremental score calculation.

This study introduces a parallel local search strategy with incremental
score calculation, which is implemented in the open source constraint solver
OptaPlanner [7]. We show that our parallelization strategy is effective for
many local search algorithms (Hill Climbing, Tabu Search, Late Acceptance
Hill Climbing, Simulated Annealing). Furthermore, we present benchmarks
on four use cases (vehicle routing problem, nurse rostering problem, course
scheduling and cloud balancing) resulting in a total of 37 datasets and 5550
benchmark runs.

The remainder of the paper is structured as follows. In Section 2 we dis-
cuss the primary implementation requirements for this research. The actual
implemented method is discussed in Section 3. A thorough experimental inves-
tigation of the implemented method is provided in Section 4. Following this,
Section 5 ends this paper with conclusions and directions for future work.

2 Requirements

Before we move on to the design of the implemented method, we must explore
three important requirements which must be fulfilled in our implementation.
These requirements are:

1. Incremental score calculation
2. Reproducible runs
3. Parallel computation

We will illustrate these requirements using the Nurse Rostering Problem
(NRP) [4] as an example, an NP-hard problem which assigns shifts to nurses.
Each shift must be assigned to exactly one nurse. Hard constraints typically
include nurse conflicts, skill requirements and minimal rest periods. Soft con-
straints may include day off requests and illness affinity.
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2.1 Incremental score calculation

A local search algorithm evaluates the neighborhood of proposed solutions at
every iteration. It determines the quality of each proposed solution by calcu-
lating its score. In simple cases, a score is formed from two weighted numbers:
one for the hard constraints (the feasibility check) and another for the soft con-
straints (the fitness function). Calculating these numbers is computationally
expensive. For example, in the Nurse Rostering Problem, it requires detecting
the number of nurse conflicts, and therefore every shift assignment must be
compared with every other overlapping shift assignment to check if they are
assigned to the same nurse. Given s shift assignments, this part of the score
calculation requires O(s2) checks, and therefore scales quadratically. Some of
the other hard or soft constraints are even more computationally expensive.

The local search algorithm triggers a score calculation for each move in its
neighborhood until an acceptance criterion is met - at which point it applies the
winning move and begins a new step to evaluate a new neighborhood. In the
NRP, a simple change move assigns one shift to a different nurse. To calculate
the score of the solution after applying such a move, we could calculate the
score from scratch by iterating over all assignments. However, this is highly
inefficient. Instead, we calculate it incrementally by determining the delta
between the old and new score. For example in the NRP, the incremental
score calculation of a move, that assigns one shift to a different nurse, need
only compare that one shift assignment with every other overlapping shift
assignment to determine the delta. This part of the score calculation now
requires only O(s) checks, instead of O(s2). This is an order of magnitude
faster than non-incremental score calculation methods.

To achieve multithreaded solving, we cannot afford to forfeit incremental
score calculation given that, in practice, the negative effects of being unable
to calculate scores incrementally far outweigh any gain of parallel computa-
tion. For example, given a NRP with 5000 shift assignments and 250 nurses,
incremental calculation of the nurse conflict constraint is up to 5000 times
faster than non-incrementally. To make up for such a loss, a perfectly paral-
lelized algorithm would require at least 5000 CPU’s. From both a practical
and economic perspective, this is clearly not an option.

Our implementation must therefore combine both incremental score calcu-
lation and multithreaded solving.

2.2 Reproducible runs

A constraint solver is reproducible if and only if running it twice yields the
exact same solution (with the exact same score), given the exact same allocated
CPU time (in the same manner). For local search and construction heuristic
algorithms, this boils down to yielding the exact same solution at every step.
A step is the outer iteration in these algorithms: each time they pick a winning
move, it is a new step. Note that due to a difference of allocated CPU time,
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the timing of each step between runs can vary and - given the same amount
of time - a reproducible run still might not reach the same number of steps.

Most local search algorithms use a Pseudo Random Number Generator
(PRNG), which influences reproducibility. For example, a PRNG breaks score
ties in Tabu Search and influences move acceptance in Simulated Annealing. A
single-threaded run can easily be made reproducible by using a single, seeded
PRNG for all decisions. However, if a multi-threaded run uses a single PRNG
across multiple threads, the concurrent calls on that PRNG suffer from conges-
tion. Furthermore, we must somehow guarantee that all calls on that PRNG
are always executed in the same order, given that re-ordering affects the step
decision, causing the entire local search algorithm to go down a different path.
As such, an efficient and reproducible multi-threaded run cannot use the same
PRNG across multiple threads.

In practice, reproducibility is critical for any production solver: it allows
programmers to debug their code during development as well as reproduce
production issues on their own machines. Furthermore, in highly regulated
enterprise environments, such as financial institutions, it enables the auditing
of historic solver runs.

Our implementation of multithreaded solving must therefore not sacrifice
reproducibility.

2.3 Parallel computation

Let us examine which parts of local search are suitable for parallelization. In
order to improve performance over a single threaded solver, a multithreaded
solver must parallelize at least parts of the algorithm. Given t threads and the
same number of CPU cores, the performance of those algorithm parts increases
by a factor of t, minus any overhead the multithreaded solving incurs.

Looking at the anatomy of a single threaded local search (Figure 1), there
are several candidates to compute in parallel:

1. Select move: From the neighborhood, generate one move at a time, just in
time. We could give each child thread a copy of the move selector (which
generates the neighborhood on the fly). If we give each move selector its own
PRNG (which is seeded by a common PRNG), they would consequently
generate the same moves, thereby preserving reproducibility. However, we
would need to force all child threads to generate and evaluate the exact
same number of moves, meaning that the faster move selectors would have
to wait for the slower ones. With a mix of fine and coarse grained moves,
or varying CPU power per core (often the case in public clouds), the per-
formance cost for enforcing an equal distribution of moves per child thread
is unacceptable. Furthermore, move selection itself is usually inexpensive
and thus we chose not to parallelize it in this work.

2. Calculate move score: Evaluating hard and soft constraints is computation-
ally expensive given that all constraints must be evaluted. Even with in-
cremental score calculation, evaluating the NRP’s nurse conflict constraint
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Fig. 1 Anatomy of a single threaded Local search

is still in O(s) - which is still expensive because its nested in the move
evaluation iteration, which is in turn nested in the step iteration. Yet each
move can be scored in isolation from the others in the same step, so this
is an ideal candidate for parallelization.

3. Accept move: In Hill Climbing, the acceptor simply checks if the score
of a move improves upon the best score. Such an implementation can be
easily parallelized. But in Simulated Annealing, the acceptance criterion
uses the PRNG. Because we do not wish to enforce in advance which child
thread evaluates which move (because, as explained earlier, this impairs
efficiency), the acceptor must always use the same PRNG in the same
order to guarantee reproducibility. Also, given that move acceptance itself
is usually inexpensive, we choose not to parallelize it.

Our approach must therefore at least parallelize the score calculation of
each move.

3 Method

We explain our method on local search in a general manner given that it
works with respect to any local search algorithm (including Tabu Search [8],
Simulated Annealing [10] and Late Acceptance Hill Climbing [3]), as shown
by the implementation and benchmarks later in this paper.
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The basic principle is parallelizing the score calculation by offloading it
from the main solver thread (the parent thread) to n child threads, as shown
in Figure 2.

Fig. 2 Multithreaded local search

This redistribution has two noteworthy consequences:

– To evaluate multiple moves in parallel, multiple moves are active simulta-
neously.

– To preserve incremental score calculation, each child thread must have an
isolated score calculation state that must be kept in sync with the steps
on the parent thread.

3.1 Select multiple moves

One implication of calculating the score of two (or more) moves in parallel
is that the second move must be generated before the calculation of the first
move’s score has finished. As explained earlier, we have chosen to generate
all moves in the parent thread. Furthermore, the winning move of a step is
also picked in the parent thread. So, given n child threads, we must at least
generate n moves in the parent thread, before processing the resulting score of
the first move in the same thread, to prevent the child threads from starving.
All these generated moves for which the score has not been processed yet are
considered active. For reproducibility, the number of active moves must be
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deterministic. Generating a different number of moves, offsets the PRNG used
in move selectors, causing non-reproducible runs. Furthermore, we must have
more than n active moves given that a child thread can calculate multiple
fine-grained moves while the parent thread is awaiting the result of a coarse-
grained move from another child thread. Therefore we have b active moves,
for which b is a multiple of n. There is a trade-off affecting the value of b: it
must be large enough to satisfy the hunger of the child threads for maximum
performance (especially with a mix of fine-grained and coarse-grained moves),
but if b is too large then the generating of b moves at the beginning of each
step iteration could negatively affect performance and memory usage. From
our experiments, we found that setting b to 10 times n is a good default setting,
where n is the number of child threads.

In the parent thread, we begin every step by selecting b moves from the
neighborhoods, before receiving the first evaluated move from a child thread.
Then, every time a move is received, we select a new one such there are always
b active moves.

3.2 Move evaluation

The parent thread communicates with the child threads through an opera-
tion queue to send information and a result queue to receive information. The
parent thread puts each selected move in the operation queue as a move calcu-
lation operation. The child threads continuously pulls these moves from that
operation queue. When they do so, they calculate the score incrementally for
that move and put the result in the result queue. The auxiliary data structures
for such incremental score calculation are maintained by each child thread in-
dividually. Meanwhile, once the parent thread has generated b moves, it pulls
the first move calculation result from the result queue. If that queue is empty,
it waits until one of the child threads adds a result. After receiving a move,
the parent thread accepts or rejects that move. Then it checks if an accepted
move has won the step iteration. If at this point in time there is no winning
step, it selects a new move.

This orchestration, shown in Figure 3, ensures that all child threads are
kept busy evaluating moves, regardless of any variance concerning move eval-
uation duration.

Due to differences in move granularity, the score calculation results of each
move come back out of order. For example, the result of the 4th generated
move may arrive before the result of the 3rd generated move, especially if
the 3rd move is more coarsely grained. For reproducibility, the parent thread
orders the results back into their original order, on the fly. In this example, if
the parent thread needs to process the 3rd move, but the 4th and 5th arrive
first, it places those moves in a backlog and waits until the 3rd move arrives.
Later, to return the 4th or 5th move, it first searches in the non-empty backlog
before pulling a move from the result queue.
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Fig. 3 Lifetime of active moves

The parent thread then accepts or rejects the retrieved move, depending on
the acceptance criteria. If enough moves are accepted, it appoints the winning
move of the current step. Both these decisions depend on the Local Search
type and greatly affect the number of selected moves per step. For example,
Tabu Search typically samples many non-tabu moves, which results in a slow
stepping run. Simulated Annealing and Late Acceptance on the other hand,
appoint the first accepted move, resulting in a fast stepping run - especially
in the beginning.

If there is no winning move, the parent thread selects a new move and puts
it in the operation queue to ensure there are always exactly b active moves,
before repeating the process.

3.3 Step chasing

If there is a winning move, the local search advances: that move is applied
on the working solution of the parent thread and the step ends. Before doing
so, it clears the operation queue (which removes most of the b active moves
except for about n active moves that already reached a child thread) and puts
n step operations for that winning move in the operations queue, to sync the
child threads. When a child thread pulls such a step operation it applies the
winning move to keep their solution state in sync with the parent thread’s
state in an incremental manner (without cloning the entire solution state).
After processing the step operation, the child thread also waits until all other
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child threads have also pulled and processed their step operation. This is to
prevent one child thread pulling two step operations of the same step from the
operations queue, which would cause another child thread to not get any and
go out of sync.

After applying the accepted move as a step, the parent thread also up-
dates the best known solution if the new solution’s score is better. Unless the
termination criterion is reached, the process restarts and the parent thread
generates b active moves. Then the parent thread continues as before: every
time it receives an evaluated move, it generates a new active move. As for the
old active moves that reached a child thread before the operations queue got
cleared, they eventually end up in the result queue too and they are completely
ignored when they finally arrive to the parent thread in the new step (based
on their outdated step ID).

This orchestration, shown in Figure 4, ensures that every child thread
has its own copy of an equivalent working solution, eventually in sync with
the parent thread, to incrementally evaluates each move in isolation. They
calculate the same score as the parent thread would, regardless of when and
which child thread ends up evaluating a specific move.

Fig. 4 Step synchronization procedure

If the termination criterion is reached, the parent thread clears the opera-
tion queue and puts n poison pill operations on the operation queue. When a
child thread pulls such a poison pill, it terminates itself. Meanwhile the parent
thread also terminates, returning the best solution encountered.
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4 Experimental results

In order to evaluate the implemented parallelization method we ran a signifi-
cant number of benchmarks on a range of optimization problems. The follow-
ing problems, all of which are available as examples within OptaPlanner1, are
considered:

– Nurse rostering problem
– Vehicle routing problem
– Curriculum course timetabling problem
– Cloud balancing problem

All experiments2 are performed on a dual Intel(R) Xeon(R) CPU E5-2660
v3 platform with 20 cores. Hyper Threading was disabled. A maximum heap
size of 4GB RAM was allowed for the Java Virtual Machine (JDK 8), which
was revealed to be sufficient for all experiments. OptaPlanner version 7.13.0.Fi-
nal was used. Each algorithm configuration was run 10 times on each set of
problem instances with different random seeds. As a termination condition, a
fixed time of 300 seconds was used for all runs.

In the next sections we will first present the summarized results for each
test case. Following this, Section 4.5 will provide a more thorough discussion
of the results.

4.1 Nurse rostering problem results

In the nurse rostering problem, as defined by the first International Nurse Ros-
tering Competition 2010 [9], shifts must be assigned to nurses while taking into
account various constraints such as skill requirements, employee availability
and unwanted shift patterns. We tested on the competition’s medium, medium-
late and medium-hidden3 instances. Figure 5 shows the average speedups over
all instances for Late Acceptance, Simulated Annealing and Tabu Search. For
each algorithm the default version without multithreading is compared against
a multithreaded version with step chasing using 2, 4, 8 and 16 threads. It is
clear from the figure that the multithreaded solver offers good speedups com-
pared to the default version, with increasing speedups up to 16 threads. The
most significant speedups are reached by Tabu Search (which is up to 9.32
times faster when using 16 threads).

In addition to the realized speedups we also want to study the effect of
parallelization on the quality of the solutions. Table 1 shows the comparison
of solution quality (score) between a Single walk (1 thread), a multi-walk4 (8

1 OptaPlanner code and documentation available at: https://www.optaplanner.org
2 A note on how to reproduce these results can be found at: https://www.optaplanner.

org/code/benchmarks.html
3 https://www.kuleuven-kulak.be/nrpcompetition/instances-results
4 Since a real multi-walk is not implemented in OptaPlanner, the multi-walk results are

defined by taking the best out of 8 independent walks.
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independent walks/threads) and the multithreaded solver with step chasing (8
threads) on the nurse rostering problem. Scores are averaged over 10 runs. The
columns ∆ single and ∆ multi-walk indicate the solution quality difference
between the step chasing and the single, and between the step chasing and
the multi-walk, respectively. The average results indicate that, when given 8
threads, multithreading with step chasing outperforms a single walk, and for
Late Acceptance and Tabu Search also outperforms a multi-walk strategy.
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Fig. 5 Average speedups on the nurse rostering problem for Late Acceptance, Simulated
Annealing and Tabu Search.

4.2 Vehicle routing problem results

In the vehicle routing problem, we tested on a set of instances from the
vrp-rep benchmark website 5: belgium-road-time-n50-k10, belgium-road-time-
n100-k10, belgium-road-time-n500-k20, belgium-road-time-n1000-k20, belgium-
road-time-n2750-k55.vrp. These include capacity constraints and realistic asym-
metric distances calculated from OpenStreetMap. Figure 6 illustrates the aver-
age speedups over all instances for Late Acceptance, Simulated Annealing and
Tabu Search on this problem. For each algorithm the default version without
multithreading is again compared against a multithreaded version using 2, 4,

5 http://www.vrp-rep.org/datasets.html
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Alg. Dataset Single Multi-walk 8T Step chasing 8T ∆ single ∆ multi-walk

LA medium01 346,3 334,0 334,9 3,29% -0,27%
LA medium02 347,1 333,0 334,4 3,66% -0,42%
LA medium03 334,8 328,0 326,0 2,63% 0,61%
LA medium04 348,9 337,0 337,4 3,30% -0,12%
LA medium05 386,1 383,0 382,1 1,04% 0,23%
LA medium hint01 152,3 120,0 121,7 20,09% -1,42%
LA medium hint02 268,9 190,0 160,0 40,50% 15,79%
LA medium hint03 314,7 187,0 190,6 39,43% -1,93%
LA medium late01 330,6 242,0 247,2 25,23% -2,15%
LA medium late02 102,2 99,0 96,1 5,97% 2,93%
LA medium late03 113,2 84,0 85,1 24,82% -1,31%
LA medium late04 113,7 106,0 105,5 7,21% 0,47%
LA medium late05 365,8 221,0 225,6 38,33% -2,08%

Late Acceptance average 16,58% 0,80%

SA medium01 254,7 251,0 248,4 2,47% 1,04%
SA medium02 253,7 248,0 248,4 2,09% -0,16%
SA medium03 250,6 244,0 244,3 2,51% -0,12%
SA medium04 251,6 246,0 245,0 2,62% 0,41%
SA medium05 316,2 312,0 311,1 1,61% 0,29%
SA medium hint01 52,2 43,0 43,2 17,24% -0,47%
SA medium hint02 103,6 95,0 97,1 6,27% -2,21%
SA medium hint03 167,6 142,0 148,6 11,34% -4,65%
SA medium late01 181,5 178,0 176,3 2,87% 0,96%
SA medium late02 36,1 25,0 27,5 23,82% -10,00%
SA medium late03 41,7 35,0 36,7 11,99% -4,86%
SA medium late04 47,4 42,0 40,8 13,92% 2,86%
SA medium late05 166,9 153,0 152,5 8,63% 0,33%

Simulated Annealing average 8,26% -1,28%

TS medium01 255,3 252,0 248,2 2,78% 1,51%
TS medium02 252,1 248,0 245,7 2,54% 0,93%
TS medium03 248,3 244,0 243,2 2,05% 0,33%
TS medium04 253,1 248,0 246,8 2,49% 0,48%
TS medium05 324,9 320,0 315,3 2,95% 1,47%
TS medium hint01 60,2 55,0 53,1 11,79% 3,45%
TS medium hint02 147,0 130,0 138,4 5,85% -6,46%
TS medium hint03 203,1 189,0 185,0 8,91% 2,12%
TS medium late01 223,9 208,0 210,0 6,21% -0,96%
TS medium late02 45,9 42,0 37,1 19,17% 11,67%
TS medium late03 51,2 49,0 45,1 11,91% 7,96%
TS medium late04 50,7 45,0 45,0 11,24% 0,00%
TS medium late05 218,8 198,0 200,1 8,55% -1,06%

Tabu Search average 7,42% 1,65%

Table 1 Score comparison on the nurse rostering problem for single-walk, multi-walk (8
threads), and step chasing (8 threads). Lower scores indicate better solutions.

8 and 16 threads. The best results are obtained when using 4 threads. More
significant speedups are obtained for larger instances, while the multithreaded
version offers no benefit for the two smallest instances .

Table 2 shows the comparison of solution quality (score) between a Single
walk (1 thread), a multi-walk (8 independent walks/threads) and the multi-
threaded solver with step chasing (8 threads) on the vehicle routing problem.
Scores are averaged over 10 runs. The columns ∆ single and ∆ multi-walk
indicate the solution quality difference between the step chasing and the single,
and between the step chasing and the multi-walk, respectively. Given the low
speedup values on this problem when 8 threads are available, no significant
benefit can be seen from the results. In fact, a multi-walk strategy performance
better in most cases.

4.3 Curriculum course timetabling results

We also tested on the curriculum course timetabling problem. Lectures have to
be assigned to rooms and periods, under constraints such as teacher conflicts,
room capacity and curriculum compactness. Instances from the international
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Fig. 6 Average speedups on the vehicle routing problem for Late Acceptance, Simulated
Annealing and Tabu Search.

Alg. Dataset Single Multi-walk 8T Step chasing 8T ∆ single ∆ multi-walk

LA belgium-road-time-n50-k10 114687,9 114320,2 114544,0 0,13% -0,20%
LA belgium-road-time-n100-k10 141631,7 140883,1 141667,2 -0,03% -0,56%
LA belgium-road-time-n500-k20 360078,3 356830,5 358769,3 0,36% -0,54%
LA belgium-road-time-n1000-k20 556317,0 555025,2 541285,1 2,70% 2,48%
LA belgium-road-time-n2750-k55 1195007,5 1194608,9 1190600,6 0,37% 0,34%

Late Acceptance average 0,71% 0,30%

SA belgium-road-time-n50-k10 117740,9 116871,7 117757,9 -0,01% -0,76%
SA belgium-road-time-n100-k10 152050,8 145775,7 152893,6 -0,55% -4,88%
SA belgium-road-time-n500-k20 374649,3 372377,2 375574,1 -0,25% -0,86%
SA belgium-road-time-n1000-k20 522698,7 512684,7 524798,4 -0,40% -2,36%
SA belgium-road-time-n2750-k55 1127755,5 1118702,3 1114100,7 1,21% 0,41%

Simulated Annealing average 0,00% -1,69%

TS belgium-road-time-n50-k10 118009,2 116340,7 117592,1 0,35% -1,08%
TS belgium-road-time-n100-k10 148411,5 144667,8 148509,0 -0,07% -2,66%
TS belgium-road-time-n500-k20 362010,5 353631,9 362017,5 0,00% -2,37%
TS belgium-road-time-n1000-k20 525642,8 521534,0 522372,1 0,62% -0,16%
TS belgium-road-time-n2750-k55 1200391,1 1200391,1 1200391,1 0,00% 0,00%

Tabu Search average 0,18% -1,25%

Table 2 Score comparison on the vehicle routing problem for single-walk, multi-walk (8
threads), and step chasing (8 threads). Lower scores indicate better solutions.

Timetabling Competition 2007 Track 3 http://www.cs.qub.ac.uk/itc2007/

are used.

Figure 7 shows the average speedups over all instances for Late Acceptance,
Simulated Annealing and Tabu Search on this problem. For each algorithm
the default version without multithreading is compared to a multithreaded
version using 2, 4, 8 and 16 threads. The figure shows how good speedups
are achieved when using 4 or more threads. However, no significant gains are
realized when using more than 4 threads. Once again, Tabu Search benefits
most from multithreaded incremental solving.
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Table 3 shows the comparison of solution quality (score) between a Sin-
gle walk (1 thread), a multi-walk (8 independent walks/threads) and the
multithreaded solver with step chasing (8 threads) on the curriculum course
timetabling problem. Scores are averaged over 10 runs. The columns ∆ single
and ∆ multi-walk indicate the solution quality difference between the step
chasing and the single, and between the step chasing and the multi-walk, re-
spectively. It should be noted, that for this problem not all runs returned a
feasible solution. Therefore, infeasible solutions are penalized with a penalty
value of 100, 000 for each hard constraint violation. On this problem, the multi-
walk strategy is capable of finding more feasible solutions. However, when both
strategies are able to find feasible solutions, the step chasing shows better re-
sults when Late Acceptance or Simulated Annealing is used.
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Fig. 7 Average speedups on the curriculum course timetabling problem for Late Accep-
tance, Simulated Annealing and Tabu Search.

4.4 Cloud balancing results

We have also tested the incremental solver on the cloud balancing problem.
This problem concerns the assignment of computer processes to machines sub-
ject to CPU, RAM and network bandwidth constraints with the aim of reduc-
ing operating costs. The instances considered are 100computers-300processes,
200computers-600processes, 400computers-1200processes, 800computers-2400processes
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Alg. Dataset Single Multi-walk 8T Step chasing 8T ∆ single ∆ multi-walk

LA comp01 10,7 10,0 6,1 42,99% 39,00%
LA comp02 214,5 191,0 199,9 6,81% -4,66%
LA comp03 209,5 191,0 188,7 9,93% 1,20%
LA comp04 127,2 111,0 104,3 18,00% 6,04%
LA comp05 250626,3 583,0 250654,5 -0,01% -42893,91%
LA comp06 244,3 222,0 181,2 25,83% 18,38%
LA comp07 269,3 251,0 186,2 30,86% 25,82%
LA comp08 147,7 130,0 120,5 18,42% 7,31%
LA comp09 224,0 208,0 211,0 5,80% -1,44%
LA comp10 200,7 185,0 156,4 22,07% 15,46%
LA comp11 1,1 0,0 0,0 100,00% 0,00%
LA comp12 10533,3 499,0 534,8 94,92% -7,17%
LA comp13 163,7 154,0 147,0 10,20% 4,55%
LA comp14 158,7 152,0 136,0 14,30% 10,53%

Late Acceptance average 28,58% -3055,64%

SA comp01 8,2 7,0 5,8 29,27% 17,14%
SA comp02 40210,2 192,0 70184,3 -74,54% -36454,32%
SA comp03 205,5 178,0 197,3 3,99% -10,84%
SA comp04 99,9 92,0 79,2 20,72% 13,91%
SA comp05 680749,7 600676,0 730764,1 -7,35% -21,66%
SA comp06 60183,0 167,0 30152,1 49,90% -17955,15%
SA comp07 184,2 167,0 125,7 31,76% 24,73%
SA comp08 118,4 103,0 85,7 27,62% 16,80%
SA comp09 187,2 174,0 176,0 5,98% -1,15%
SA comp10 147,0 135,0 113,7 22,65% 15,78%
SA comp11 0,8 0,0 0,0 100,00% 0,00%
SA comp12 30569,5 543,0 70568,6 -130,85% -12896,06%
SA comp13 126,6 120,0 106,4 15,96% 11,33%
SA comp14 140,1 123,0 116,4 16,92% 5,37%

Simulated Annealing average 8,00% -4802,44%

TS comp01 7,8 6,0 5,8 25,64% 3,33%
TS comp02 150242,3 233,0 160217,0 -6,64% -68662,66%
TS comp03 259,5 239,0 230,6 11,14% 3,51%
TS comp04 129,3 105,0 114,0 11,83% -8,57%
TS comp05 730741,0 600693,0 790767,8 -8,21% -31,64%
TS comp06 120217,8 220,0 90185,4 24,98% -40893,36%
TS comp07 220,2 200,0 173,7 21,12% 13,15%
TS comp08 149,9 137,0 135,8 9,41% 0,88%
TS comp09 230,2 218,0 221,0 4,00% -1,38%
TS comp10 179,8 160,0 145,1 19,30% 9,31%
TS comp11 10,2 1,0 1,9 81,37% -90,00%
TS comp12 120595,5 100564,0 100587,1 16,59% -0,02%
TS comp13 157,1 125,0 143,4 8,72% -14,72%
TS comp14 177,5 143,0 154,9 12,73% -8,32%

Tabu Search average 16,57% -7834,32%

Table 3 Score comparison on the curriculum course timetabling problem for single-walk,
multi-walk (8 threads), and step chasing (8 threads). Lower scores indicate better solutions.
Infeasible solutions are penalized with a penalty value of 100, 000 for each hard constraint
violation

and 1600computers-4800processes from optaplanner-examples. Figure 8 illus-
trates the average speedups over all instances when Late Acceptance, Simu-
lated Annealing and Tabu Search are applied to this problem. For each al-
gorithm the default version without multithreading is compared against a
multithreaded version using 2, 4, 8 and 16 threads. The figure shows that
the multithreaded incremental solver runs faster than the default version on
this problem. The largest speedups are realized for the Tabu Search with 8
threads. However, further increasing the number of threads to 16 appears to
have a negative impact on the speedup for Tabu Search.

Table 3 shows the comparison of solution quality (score) between a Single
walk (1 thread), a multi-walk (8 independent walks/threads) and the multi-
threaded solver with step chasing (8 threads) on the cloud balancing problem.
Scores are averaged over 10 runs. The columns ∆ single and ∆ multi-walk
indicate the solution quality difference between the step chasing and the sin-
gle, and between the step chasing and the multi-walk, respectively. Although a
small benefit over a single walk can be observed, the step chasing speedups do
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Alg. Dataset Single Multi-walk 8T Step chasing 8T ∆ single ∆ multi-walk

LA 100computers-300processes 111036,0 110650,0 110715,0 0,29% -0,06%
LA 200computers-600processes 193061,0 191490,0 192793,0 0,14% -0,68%
LA 400computers-1200processes 432172,0 429110,0 432230,0 -0,01% -0,73%
LA 800computers-2400processes 890808,0 886520,0 889665,0 0,13% -0,35%
LA 1600computers-4800processes 1788136,0 1783800,0 1784911,0 0,18% -0,06%

Late Acceptance average 0,14% -0,38%

SA 100computers-300processes 110335,0 109950,0 110142,0 0,17% -0,17%
SA 200computers-600processes 192335,0 191370,0 192183,0 0,08% -0,42%
SA 400computers-1200processes 429866,0 428300,0 430913,0 -0,24% -0,61%
SA 800computers-2400processes 886034,0 884510,0 884609,0 0,16% -0,01%
SA 1600computers-4800processes 1765000,0 1763950,0 1759957,0 0,29% 0,23%

Simulated Annealing average 0,09% -0,20%

TS 100computers-300processes 110099,0 109410,0 108723,0 1,25% 0,63%
TS 200computers-600processes 191490,0 190530,0 190148,0 0,70% 0,20%
TS 400computers-1200processes 432013,0 429360,0 428019,0 0,92% 0,31%
TS 800computers-2400processes 895670,0 891230,0 881928,0 1,53% 1,04%
TS 1600computers-4800processes 1803831,0 1801300,0 1761139,0 2,37% 2,23%

Tabu Search average 1,36% 0,88%

Table 4 Score comparison on the cloud balancing problem for single-walk, multi-walk (8
threads), and step chasing (8 threads). Lower scores indicate better solutions.

not translate into significantly better solutions on this problem when compared
to a multi-walk.
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Fig. 8 Average speedups on the cloud balancing problem for Late Acceptance, Simulated
Annealing and Tabu Search.
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4.5 Results discussion

The results on the four tested benchmark problems show that the proposed
multithreaded implementation offers significant speedups in general. However,
the speedups depend upon the problem characteristics such as scale.

It can be seen that Tabu Search benefits more from the multithreaded
implementation than Simulated Annealing and Late Acceptance. This can be
attributed to the fact that Tabu Search typically evaluates more moves in each
step than the other algorithms. This means that it performs fewer steps and
therefore has less step chasing overhead.

When compared to a (non parallel) single-walk, the step chasing strategy
results in significantly better solutions. However, when compared to a multi-
walk strategy, which offers a more diverse search, step chasing does not always
results in better solutions. In particular, when feasibility is difficult to achieve
a multi-walk strategy seems to be the better choice.

5 Conclusion and future work

This paper introduced an effective multithreaded incremental solving method
for metaheuristics using the concept of step chasing. This method was in-
tegrated into the OptaPlanner solver and compared against the default non-
multithreaded metaheuristics on four difficult combinatorial optimization prob-
lems: the nurse rostering problem, the vehicle routing problem, the curriculum
course timetabling problem and the cloud balancing problem. It shows signif-
icant speedups and better solutions.

An important requirement of the method are reproducible runs. This highly
impacted architecture. Dropping this requirement could yield additional per-
formance and scaling benefits. Future research is needed to quantify such ben-
efits.

As it stands, experiments show diminishing returns as the child thread
count increases or as move evaluation duration decreases. This is likely due
to congestion in the operation and result queue. This leads to two potential
improvements which ought to be addressed in future research:

– Ship multiple moves in bulk through the operation and result queues in
order to decrease the frequency with which parent and child threads operate
on it.

– Redesign an architecture in which the child threads do not share the same
operation and result queue. For example, there could be one operation
queue per child thread, such that only the parent thread and one child
thread interact with the same queue (except for work stealing by other
child threads which have already emptied their own operation queue). Al-
ternatively, the result queue could be replaced by a reduce operation similar
to that found in MapReduce.
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Further research is also needed to determine how well this technique applies
on other metaheuristics, such Genetic Algorithms, Particle Swarm Optimiza-
tion and Ant Colony Optimization.

Acknowledgements Editorial consultation provided by Luke Connolly (KU Leuven).
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ITC 2019 : University Course Timetabling with MaxSAT

Alexandre Lemos · Pedro T. Monteiro ·
Inês Lynce

Abstract This paper describes the UniCorT tool designed to solve university
course timetabling problems specifically tailored for the 2019 International
Timetabling Competition (ITC 2019). The proposed approach comprehends
pre-processing, the use of a Maximum Satisfiability (MaxSAT) solver, and a
local search procedure.

UniCorT is assessed with the benchmark instances from ITC 2019. The
impact of a handful of techniques in the quality of the solution and the execu-
tion time is evaluated. We take into account different pre-processing techniques
and Conjunctive Normal Form (CNF) encoding, as well as the combination
with a local search procedure. The success of our tool is attested by having
been ranked among the five finalists of the ITC 2019 competition.

Keywords ITC 2019 · MaxSAT · University Course Timetabling

1 Introduction

The University Course Timetabling Problem (UCTTP) was introduced in the
context of the fourth International Timetabling Competition (ITC) 2019 [1].
UCTTP can be informally defined as two complementary problems: (i) course
timetabling; and (ii) student sectioning. The goal of course timetabling is to
find a feasible assignment for all the classes of all courses to a time slot and a
room, subject to a set of time constraints. The goal of student sectioning is to
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section students into all the classes required by the courses they are enrolled
in, subject to capacity and time constraints.

Timetabling problems have been encoded in the past into propositional
logic [2, 3]. This approach has the advantage of making use of propositional
satisfiability (SAT) solvers, which are well-known for being quite effective [4].

Example 1 Let us consider four Boolean variables rr1c1 , rr2c1 , rr1c2 and rr2c2 repre-
senting the possible assignments of the classes c1 and c2 to all available rooms
(r1 and r2). Furthermore, let us consider that the classes are taught at the
same time, and thus they cannot be taught in the same room. The same room
constraint is encoded as follows: ¬rr1c1 ∨ ¬r

r1
c2 and ¬rr2c1 ∨ ¬r

r2
c2 . A possible so-

lution to this SAT problem is the assignment of class c1 to room r1 and class
c2 to room r2, i.e. rr1c1 = 1, rr2c1 = 0, rr1c2 = 0 and rr2c2 = 1. Naturally, for larger
domains, one may need to encode cardinally constraints.

UCTTP usually requires to optimize a set of non-mandatory (soft) con-
straints. Therefore, in this paper we use a maximum satisfiability solver. The
maximum satisfiability problem (MaxSAT) [4] is an optimization version of
the SAT problem.

This paper provides a detailed description and evaluation of the MaxSAT-
based approach that was ranked amongst the five finalists of ITC 2019. The
resulting tool UniCorT combines pre-processing methods, a MaxSAT solver
and a local search procedure to solve UCTTP. We use a MaxSAT solver to find
a complete solution to a problem instance, followed by a local search procedure
to further optimize the solution. We evaluate two different encodings within
UniCorT 1. This tool is evaluated with the large data sets from the ITC 2019
benchmark [1]. Furthermore, we discuss the advantages and disadvantages of
the different components of the implementation submitted to ITC 2019.

This paper is organized as follows. Section 2 provides the required back-
ground on UCTTP and MaxSAT solving. Section 3 formally describes the
ITC 2019 problem. Section 4 describes UniCorT. Section 4.1 details the pre-
processing techniques. Section 4.2 describes the two different MaxSAT encod-
ings for the course timetabling and student sectioning problems. Section 4.3
describes the local search. Section 5 analyses the evaluation of the proposed ap-
proach considering different encodings. The impact of different pre-processing
techniques is also taken into account. Finally, Section 6 concludes the paper
and discusses possible future directions.

2 Background

This section provides a background on MaxSAT, followed by an overview of
existing approaches to solve the UCTTP.

1 One of these encodings has already been successfully applied to solve the minimal
perturbation problem in a university course timetabling setting [5]. The paper describing
the encoding is available at http://web.tecnico.ulisboa.pt/~alexandre.lemos/papers/

CPAIOR20.pdf.
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2.1 MaxSAT

A propositional formula in conjunctive normal form (CNF) is defined as a
conjunction of clauses, where a clause is a disjunction of literals and a literal
is either a Boolean variable x or its complement ¬x. The propositional satisfi-
ability (SAT) problem consists of deciding whether there is a truth assignment
to the variables such that a given CNF formula is satisfied. A formula is sat-
isfied iff there is at least one assignment where all the clauses are satisfied. A
clause is satisfied iff there is at least one literal satisfied. Nowadays, most SAT
solvers apply conflict-driven clause learning algorithms [6, 7], which are based
on the well-known Davis-Putnam algorithm [8] (see [4] for more details).

The MaxSAT problem is an optimization version of SAT, where the objec-
tive is to find an assignment that maximizes the number of satisfied clauses.
A partial MaxSAT formula (ϕ = ϕh ∪ ϕs) consists of a set of hard clauses
(ϕh) and a set of soft clauses (ϕs). The objective in partial MaxSAT is to find
an assignment such that all hard clauses in ϕh are satisfied, while maximizing
the number of satisfied soft clauses in ϕs.

In this paper, we consider the weighted variant of partial MaxSAT where
there is a function wϕ : ϕs → N associating an integer weight to each soft
clause. In this case, the objective is to satisfy all the clauses in ϕh and maximize
the total weight of the satisfied clauses in ϕs.

Example 2 Recall example 1, where rr1c1 = 1, rr2c1 = 0, rr1c2 = 0 and rr2c2 = 1
was a feasible solution. Now, let us consider that the assignment of class c1 to
room r1 has a penalty of 1 associated. For this reason, we add ¬rr1c1 as a soft
clause with weight 1. The previously found solution has now a cost 1 and it is
not optimal. The optimal solution is rr1c1 = 0, rr2c1 = 1, rr1c2 = 1 and rr2c2 = 0.

Most MaxSAT solvers [9, 10] call a SAT solver iteratively to improve the
quality of the solution. There are different algorithms to guide the search. In
this work, we use the linear search with clusters algorithm [11]. The basic idea
is the following. We start with a formula where all clauses, including the soft
clauses, are considered hard. If a solution is found, then the process ends with
the optimal solution. Otherwise, the SAT solver is restarted with a relaxed
formula. The relaxed formula consists of adding one new variable to each soft
clause. Additionally, we add a constraint imposing a limit on the number of
relaxed clauses. This limit is incremented each time the formula is not satisfied.
This process ends when a solution is found, or when it is impossible to satisfy
all the hard clauses.

In general, we assume that all formulas are encoded into CNF. Neverthe-
less, we will write some constraints in pseudo-Boolean (PB) form for the sake
of readability. PB constraints are nothing more than linear constraints over
Boolean variables, and can be written as follows:

∑
qixi opK, where K and all

qi are integer constants, all xi are Boolean variables, and op ∈ {<,≤,=,≥, >}.
PB constraints can be easily translated into CNF [12]. In this work, we tested
different encodings for PB constraints.
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Example 3 Consider the following PB constraint:
∑2

i=0 r
ri
c1 ≤ 1. The constraint

ensures that the class c1 can only be assigned to at most one room. One possible
CNF encoding is as follows: (¬rr0c1 ∨ ¬r

r1
c1 ) ∧ (¬rr0c1 ∨ ¬r

r2
c1 ) ∧ (¬rr1c1 ∨ ¬r

r2
c1 ).

2.2 University Course Timetabling

UCTTP is known to be NP-complete [13, 14]. The organization of timetabling
competitions in the past has led to important advances in solving UCTTP [15,
16]. In the literature, there are several different approaches to solve UCTTP,
namely: Constraint Programming (CP) [17, 18], Answer Set Program-
ming (ASP) [19], Boolean Satisfiability (SAT) [2], Maximum Satisfiabil-
ity (MaxSAT) [3, 5], Integer Linear Programming (ILP) [20–22] and local
search [20, 23].

Lemos et al. [24] proposed two integer programming models to solve univer-
sity timetabling problems. The Boolean model that used two decision variables
to describe the assignment of a class to a time slot and the assignment of a
class to a room. The authors also proposed a mixed model that had an integer
variable representing the start time of class and a Boolean variable represent-
ing the assignment of a class to a room. The direct model presented in this
paper can be seen as the extension of the Boolean model.

In the context of SAT, Aśın Achá et al. [3] proposed a CNF encoding with
four types of decision variables to solve curriculum-based course timetabling
with data from ITC-2007. The authors proposed variables to described: the
day of the class; the hour of the class; the room of the class, and finally the
different times a curriculum is taught. Obviously, the problem is different from
ours. For example, in ITC 2019 the classes can be scheduled in different weeks.

Later, Lemos et al. [5] proposed a CNF encoding with four types of decision
variables to solve the minimal perturbation problem applied to UCTTP with
data from ITC 2019. The authors proposed variables to describe: the week of
the class; the day of the class; the hour of the class and finally the room of the
class. This linked encoding can be seen as the extension to the work proposed
in [3].

3 Problem Definition

In this section, we formally describe the ITC 2019 problem adapted from [1].
Let us consider a set of courses Co. A course (co ∈ Co) is composed by a
set of classes Cco. These classes are characterized in configurations (Configco)
and organized in parts (Partsconfig). A student must attend the classes from
a single configuration. A student enrolled in the course co and attending the
configuration config ∈ Configco must attend exactly one class from each part
Partsconfig . The set of classes belonging to part ∈ Partsconfig is represented by
Cpart .

All classes C (from different courses) must have a schedule assigned to
them. Each class c ∈ C has a set of possible periods (Pc) to be scheduled
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Pre-processing Course
Timetabling

Student
Sectioning

MaxSAT

Student Conflict
Optimisation

Local SearchProblem
Instance

Timetable

Fig. 1: Overall schema of UniCorT.

in. Class c has a hard limit on the number of students that can attend it
(limc). A class c may have a set of possible rooms (Rc). Each room r ∈ Rc

has capacity ≥ limc. Each class may also have a parent-child relation with
another class, i.e., a student enrolled in class c must also be enrolled in the
parent parentc.

A time period p corresponds to a 4-tuple (Wp, Dp, hp, lenp) denoting a set
of weeks (Wp), a set of days (Dp), an hour (hp), and its duration (lenp > 1).

Let us consider a set of rooms R where the classes can be scheduled. The
travel time, in slots, between two rooms r1, r2 ∈ R is represented by travelr1r2 .
Each room r ∈ R has a set of unavailable periods Pr.

Given a set of students S, each student s ∈ S is enrolled in a set of courses
Cos . Furthermore, UCTTP is subject to a set of constraints (constraintc is
the set of constraints relating to class c) that can be divided into hard or soft.
For brevity, we defined the constraints as needed in the encoding section (for
a full description see [1]).

4 Proposed Solution

In this section, we describe UniCorT. Figure 1 describes the overall schema
of the tool, which has three separate components: pre-processing the UCTTP
instance; using a MaxSAT solver to find a solution; and improving the quality
of the solution with a local search procedure.

4.1 Pre-processing

The pre-processing component relies on two techniques: (i) identifying of inde-
pendent sub-instances; and (ii) merging students with exactly the same course
enrollment plan.

Technique (i) divides the problem instance into self-contained sub-
instances. A set of sub-instances (Inst) are self-contained if and only if the
following four constraints are upheld:

1. ∀i1,i2∈Inst Coi1 ∩ Coi2 = ∅;
2. ∀i1,i2∈Inst Ri1 ∩Ri2 = ∅;
3. ∀i1,i2∈Inst Si1 ∩ Si2 = ∅;
4. ∀i1,i2∈Inst ∀c∈Ci1

constraintc ∩ Ci2 = ∅.
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If these constraints are upheld then we can split the instances without remov-
ing any non redundant solution. Note that it is possible to consider a relaxation
of this procedure.

Example 4 Let us consider an instance Inst with five courses co1, . . . , co5 ∈
CoInst and five rooms r1, . . . , r5 ∈ RInst. The classes of the courses co1 and
co2 can only be taught in two rooms r1 and r2. The classes of the courses co3,
co4 and co5 can only be taught in rooms r3, r4 and r5, respectively. Therefore,
we can create four sub-instances i1, . . . , i4 ∈ Inst such that co1, co2 ∈ Coi1 ,
co3 ∈ Coi2 , co4 ∈ Coi3 and co5 ∈ Coi4 .

Consider three students s1, s2, s3 ∈ SInst with the following enrollments: s1
is enrolled in courses co1, co2; s2 is enrolled in courses co3, co4; and finally s3 is
enrolled in co5. The student enrollments reduces the number of sub-instances
since sub-instances i2 and i3 violate constraint 3. These two sub-instances
must be solved together.

Consider a no overlap constraint between the classes of the courses co4
and co5. The sub-instances i3 and i4 violate constraint 4. For this reason, the
instance Inst can only be split into two self-contained sub-instances such that
co1, co2 ∈ Coi1 and co3, co4, co5 ∈ Coi2 .

Technique (ii) reduces the number of variables and constraints by creating
groups of students that share the same curricular plan [25, 26]. The follow-
ing example illustrates the identification of groups of students with the same
curricular plan.

Example 5 Let us consider three courses co1, . . . , co3 ∈ Co and six students
s1, . . . , s6 ∈ S that are enrolled in courses as follows: s1, . . . , s4 are enrolled
in the courses co1 and co2; and s5, s6 are enrolled in the courses co2 and co3.
In this example, it is possible to generate two perfect clusters: clu1 for all the
students enrolled in courses co1 and co2; and clu2 for all the students enrolled
in courses co2 and co3.

However, this process may remove all the feasible solutions since the classes
of each course may have a limitation on the number of students enrolled. Let
us denote the greatest common divisor (GCD) between the numbers n1 and
n2 as GCD(n1, n2). Consider now an expansion of the previous example.

Example 6 Let us revisit the Example 5 and consider that each course has
two classes, and so c1, c2 ∈ Cco1 , c3, c4 ∈ Cco2 and c5, c6 ∈ Cco1 . A student
enrolled in the courses co1, co2, co3 must attend exactly one class. The limit
on the number of students that can attend is, for each class, as follows: limc1 =
limc2 = 4; limc3 = limc4 = 3; and limc5 = limc6 = 2. Figure 2 shows the
clusters defined in Example 5 and a possible student sectioning to classes. One
can see that the solution is infeasible.

For this reason, we computed GCD between the total number of students
enrolled in a course and the smallest capacity of the classes of that course.
In this case, we obtain: GCD(4, 4) = 4 for course co1; GCD(6, 3) = 3 for
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Fig. 2: An infeasible assignment of students to classes based on the clusters
defined in Example 5.
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Fig. 3: A feasible assignment of students to classes based on the clusters defined
in Example 6.

course co2; and GCD(2, 2) = 2 for course co3. This indicates that the cluster
of students enrolled in co2 needs to be smaller or equal to 3. Therefore, we need
to split clu1. One possibility is to create two clusters. One feasible solution is
shown in Figure 3.

This process ensures that it is possible to find a feasible solution to a
problem instance, since it is possible to combine all groups of students into
classes. However, we may remove the optimal solution by not allowing the
assignment of a single student to a given class. The pros and cons of creating
clusters are discussed in Section 4.2.3. The GCD can also be used to choose
the number of sections of a course in order to reduce the number of conflicts
a priori [26].

4.2 MaxSAT

In this section, we formally describe two MaxSAT encodings for course
timetabling. The two MaxSAT encodings for course timetabling are denoted
as: direct and linked [5]. The ITC 2019 optimization criteria are encoded as
soft constraints in both encodings. Furthermore, we also describe a MaxSAT
encoding for student sectioning.

4.2.1 Direct Course Timetabling

The most direct encoding has only one type of variable to describe the as-
signment of a class to an allocation slot and a room. This type of encoding
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is commonly used to describe scheduling problems [20, 21, 24, 27]. For this
reason, we decided to start with this type of encoding in CNF. This encoding
can be seen as an expansion of the Boolean encoding we proposed in [24].
Our direct encoding to solve course timetabling has only two Boolean decision
variables:

– tslot
c represents the assignment of class c to the allocation slot slot,

with c ∈ C and slot ∈ [0, . . . , |Pc|];
– rroomc represents the assignment of class c to the room room,

with c ∈ C and room ∈ Rc.

The separation of the decision variables into two variables allows us to
reduce the number of unnecessary variables. Using only one decision variable
would increase the amount of memory allocation (|Rc| × |Pc|), where most of
these variables are always with value 0.

Most UCTTP constraints have a similar encoding when using the direct
encoding. For this reason, here we only show a few examples.

In the direct encoding we need two types of exactly one constraints. We
need to ensure that each class is assigned exactly one slot and in some cases
that each class is assigned exactly one room.

Example 7 Let us consider two classes c1 and c2 with the following char-
acteristics: Dc1 = Dc2 = {0101, 1010}; Wc1 = Wc2 = {11110, 01111};
Hc1 = {10, 11}; Hc2 = {11}; Pc1 = {1, . . . , 12}; Pc2 = {1, . . . , 8}; Rc1 = {1, 2}
and Rc2 = ∅. In this example, we generate the following exactly one con-

straints:
∑12

i=1 t
i
c1 = 1,

∑8
i=1 t

i
c2 = 1 and

∑2
i=1 r

i
c1 = 1.

All constraints related to time allocations, can be encoded into one binary
clause for each pair of classes ci, cj where pi ∈ Pci and pj ∈ Pcj :

¬tpi
ci ∨ ¬t

pj
cj . (1)

All constraints that involve both time and room allocation can be encoded as
follows:

¬tpi
ci ∨ ¬t

pj
cj ∨ ¬r

roomi
ci ∨ ¬rroomj

cj . (2)

The following constraints are encoded the same way for both encodings. In
order to ensure that a given class cannot be taught in more than V different
days (MaxDays(V)) we use an auxiliary variable dayofweekconst

d , where const
is the identifier of the constraint and d ∈ {1 , . . . , |Days|}. This variable corre-
sponds to having at least one class, of this constraint, assigned to weekday d.
Now, we only need to ensure that:∑

c∈C

∑
p∈Pc

∑
d∈[1,...,|Dayp|]

dayofweekconst
d ≤ V . (3)

In order to ensure that there are no more than V consecutive slots (breaks)
throughout a day between a set of classes (MaxBlock/MaxBreaks) we need to
generate all blocks. After computing all blocks, we add a clause for every class
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c1 to cn assigned to a period (p1 ∈ Pc1 to pn ∈ Pcn) in such a way that it
forms a block of classes that breaks one of these constraints:

¬tp1
c1 ∨ . . . ∨ ¬tpn

cn . (4)

Example 8 Let us consider two classes c1 and c2 that are taught in the same
day and cannot overlap in time. Furthermore, all classes are involved in the
MaxBreaks constraint which ensures that there are 0 breaks (of 1 time slot
or more) between them. For simplicity, let us consider that there are only
three time slots, t1, t2, t3, per day and all the classes have the same duration
of 1 time slot. To ensure that the constraint MaxBreaks holds, we add clauses
¬tt1c1 ∨ ¬t

t3
c2 and ¬tt1c2 ∨ ¬t

t3
c1 .

4.2.2 Linked Course Timetabling

It is obvious that we do not need always to take into account the complete
schedule information. For some constraints, we only need the information
about week, day or hour, and not all the three. For this reason, our linked
encoding to solve course timetabling has only four Boolean decision variables:

– w
Weekp
c represents the assignment of class c to the set of weeks Weekp ,

with c ∈ C, and p ∈ Pc;

– d
Dayp
c represents the assignment of class c to the set of days Dayp,

with c ∈ C, and p ∈ Pc;

– h
hourp
c represents the assignment of class c to the hour hourp,

with c ∈ C and p ∈ Pc;
– rroomc represents the assignment of class c to the room room,

with c ∈ C and room ∈ Rc.

The usage of these variables can be seen as an expansion of the encoding
proposed in [3]. The scheduling possibilities of a class are usually just a small
part of the complete set. For this reason, we only define these variables for ac-
ceptable values of the class domain. Furthermore, the linked encoding reduces
the number of constraints required. For example, SameStart constraints (i.e.
forcing a set of classes to start at the same time) do not require information
about the day or week of the class.

In contrast to the direct encoding we can reduce the size of each exactly
one constraint since we have separated the variables for the time allocation.
Therefore, we have four exactly one constraint for each class (room, hour, day
and week). The reduction in the size of the exactly one constraints is important
since it allows us to avoid a known bottleneck of timetabling encodings using
CNF [2].

Example 9 Recall Example 7. The linked encoding for the same instance gen-
erates a much smaller number of exactly one constraints. In this example, we
generate the following exactly one constraints:

∑2
i=1 w

i
c1 = 1,

∑2
i=1 w

i
c2 = 1,∑2

i=1 d
i
c1 = 1,

∑2
i=1 d

i
c2 = 1,

∑2
i=1 h

i
c1 = 1, h11

c2 = 1 and
∑2

i=1 r
i
c1 = 1.
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Once again, most UCTTP constraints have a similar encoding. Therefore,
here we only show a few examples. For constraints involving only the variable
hour (e.g. SameStart) we add the clause:

¬hhourpi
ci ∨ ¬h

hourpj
cj . (5)

Similarly, the same type of clauses have to be added for constraints involving
only the variables day (e.g. SameDay), week (e.g. SameWeek) and room (e.g.
SameRoom).

However, not all constraints are so simple to write. For constraints that
involve all the time assignments (week, day and hour) we add an auxiliary
variable t . This variable has exactly the same meaning that the decision vari-
able of the direct encoding. This allows us to generate binary clauses to en-
code more complex constraints (e.g. ensuring that two classes do not overlap
in time).

To further reduce the size of the clauses, we define the auxiliary variables
sdcicj to represent two classes taught in the same day (i.e. with at least one day
overlap). For each two classes ci, cj with i 6= j, consider that overlap in days
Day0 to Dayn belong to the domain of class ci, Dayn+1 to Daym belong to the
domain of class cj , with 0 < n < m. Hence, we add the following equivalence:

sdcicj ⇐⇒ (dDay0
ci ∨ . . . ∨ dDayn

ci ) ∧ (dDayn+1
cj ∨ . . . ∨ dDaym

cj ). (6)

Similarly, one can define an auxiliary variable swci
cj to represent two classes

overlapping in at least one week.
To guarantee that no two classes (ci, cj) are taught in the same room (ro)

in overlapping times, we add the clause:

¬sdcicj ∨ ¬sw
ci
cj ∨ ¬h

hourpi
ci ∨ ¬h

hourpj
cj ∨ ¬rroci ∨ ¬r

ro
cj . (7)

The remaining constraint types are encoded in the same way for both
encodings (see previous section).

4.2.3 Student Sectioning

The usage of clusters requires us to define a set Cluster of clusters of students.
The number of students merged in the clu ∈ Cluster is represented by |clu|.

In order to solve student sectioning our encoding is extended with one de-
cision variable scclu, where c ∈ C and clu ∈ [1, . . . , |Cluster|]. The advantage of
the pre-processing step of creating clusters is to reduce the number of variables
and constraints required to model students. Note that ITC 2019 instances do
not require student sectioning to be balanced as in [26].

Example 10 Let us consider again Example 5. Recall that we have three
courses co1, . . . , co3 ∈ Co and six students s1, . . . , s6 ∈ S that are enrolled
in the following courses: students s1, . . . , s4 are enrolled in the courses co1 and
co2; and students s5, s6 are enrolled in the courses co2 and co3. Therefore, it is
possible to generate two perfect clusters: clu1 for all the students enrolled in
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courses co1 and co2; and clu2 for all the students enrolled in courses co2 and
co3. Additionally, consider that |Cco1 | = |Cco2 | = 1 and |Cco3 | = 6.

The two clusters allow to reduce the number of variables from 22 (the
number of students times the number of classes available for each student) to
9 (the number of clusters times the number of classes). Note that the impact
of the clusters depends not only on the number of students merged but also on
the course composition. In this case, the smaller cluster (clu2) has a greater
impact since the courses have a larger number of classes, more precisely 7
variables.

In order to ensure that a student can only be assigned to a single course con-
figuration, we define an auxiliary variable for each pair configuration-cluster of
students. The variable is denoted as conf config

clu , where clu ∈ [1, . . . , |Cluster|],
config ∈ Configco and co ∈ Co.

We need to add an exactly one constraint to ensure that each cluster of
students id is enrolled in exactly one configuration of each course. To ensure
that the class capacity is not exceeded, we add the following constraint for
each class c: ∑

clu∈[1,...,|Cluster|]

|clu| × scclu ≤ limc. (8)

In addition, to ensure that a cluster of students clu enrolled in a class c is
also enrolled in this parent class parentc, we add the following clause:

¬scclu ∨ sparentcclu . (9)

Finally, we need to ensure that a cluster of students clu is enrolled in exactly
one class of each part of a single configuration of the course co. The conflicting
schedule of classes attended by the same cluster of students is represented by
a set of weighted soft clauses. For each cluster of students id enrolled in two
classes ci, cj overlapping in time, we add:

¬sciclu ∨ ¬s
cj
clu ∨ ¬sw

ci
cj ∨ ¬sd

ci
cj ∨ ¬h

hourci
ci ∨ ¬h

hourcj
cj . (10)

4.3 Local Search: Student Conflict Optimisation

The goal of this procedure is to improve the quality of the solution found with-
out changing the schedule and room assignments of the courses. Neighborhood
structures are the basis of this local search (LS) procedure. In this work, the
neighborhood consists of small changes in the student sectioning. To create a
new neighborhood two operations can be performed: (i) allocating a cluster
of students to a different class with empty seats and (ii) swaping two clusters
of students between classes. Considering these moves, the procedure does not
require the knowledge of course timetabling constraints. The LS procedure
stops when the neighbors of the best solution cannot reduce the number of
conflicts (i.e. the solution found has the best cost of its neighborhood).
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Fig. 4: The two neighbors of the solution in Example 6.

Example 11 Let us consider again Example 6. Additionally, consider that the
classes c3 and c5 are taught at the same time, on the same day and in the
same week. For this reason, the solution shown in Figure 3 has two conflicts
(students s5 and s6 are sectioned into two classes that overlap in time). This
solution would have two neighbors for which the solution would improve. These
two neighbors are shown in Figure 4. The neighbor M1 swaps students s5 and
s6 with students s2 and s3 (from class c3 to c4). However, this move is not
possible since the clusters do not allow to separate the students s2 and s3 from
s1. The neighbor M2 results from is just sectioning students s5 and s6 to the
class c6 instead of c5. This change does not require to break any clusters and
reduces the number of conflicts to zero.

5 Experimental Evaluation

In this section, we discuss the main computational results obtained. First, we
describe the experimental setup used to validate UniCorT (Section 5.1). Next,
we discuss our results for UCTTP (Section 5.2). Finally, we present a summary
of the results (Section 5.3).

5.1 Experimental Setup

The experimental evaluation was performed on a computer with Fedora
14, with 32 CPUs at 2.6 GHz and 126 Gb of RAM. All results were obtained
when running the solver with a time out of 6,000 seconds.

We used the benchmark obtained from ITC 2019 [1] to validate our tool.
The benchmark is divided into three groups of instances (early, middle, late).
All results were verified by an online validation tool provided by the organiz-
ers2.

UniCorT was implemented in C++, using the MaxSAT solver TT-Open-
WBO-Inc [10, 28]3 as a black box. TT-Open-WBO-Inc is a linked MaxSAT

2 https://www.itc2019.org/validator, accessed in January of 2020
3 TT-Open-WBO-Inc won both the Weighted Incomplete tracks at MaxSAT Evaluation

2019. The results are available at https://maxsat-evaluations.github.io/2019/.
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solver [9] that has different algorithms and encodings to solve a given prob-
lem. The results shown in this paper correspond to the best configuration
of the parameters of the solver. The solver was executed with the following
parameters:

? -algorithm=6 corresponding to the use of linear search with the clusters
algorithm [11];

? -pb=2 corresponding to the use of the adder encoding [29] to convert the
PB constraints to CNF;

? -amo=0 corresponding to the use of the ladder encoding [30] to convert
exactly one constraints to CNF.

The linear search with the clusters algorithm uses a lexicographic optimiza-
tion criterion [31]. Recall that ITC 2019 considers four optimization criteria:
the cost of assigning a class to a room; the cost of assigning a class to a time
slot; the number of students conflicts; and the weighted sum of violated soft
constraints. Each instance has its own weight for each criterion. We have com-
puted the worst possible penalization of each criterion and used the value to
order the lexicographic optimization.

The XML parser used to parse the ITC 2019 input file was RAPIDXML4.
Also, we make our implementation available on github (https://github.com/
ADDALemos/MPPTimetables/tree/ITC-2019).

5.2 Computational Evaluation

In this section, we discuss the results of UniCorT and all possible configura-
tions tested.

5.2.1 Pre-processing Techniques

Recall that we discussed two pre-processing techniques: (i) identification of
independent sub-instances and (ii) merging students into clusters.

Identification of independent sub-instances The identification of independent
sub-instances allows us to split the problem without loosing solutions. In the
end, it is just a question of combining all the solutions. On average, we can split
an instance into 3 sub-instances. In most cases, the instances have one large
instance and two smaller instances. A detailed description of the sub-instances
is shown in Table 1.

4 RAPIDXML is available at http://rapidxml.sourceforge.net/manual.html, accessed
in February 2019.
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Table 1: Number of sub-instances found and the respective average size.

Instance # Inst # Classes
Avg. Median

Early

agh-fis-spr17 2 599.5 599.6
agh-ggis-spr17 3 617 12

bet-fal17 4 292.25 127
iku-fal17 4 649.5 140

mary-spr17 3 281.3 10
muni-fi-spr16 1 575 575

muni-fsps-spr17 3 543.3 10
muni-pdf-spr16c 4 635.25 9.5

pu-llr-spr17 3 388.6 165
tg-fal17 1 711 711

Middle

agh-ggos-spr17 2 620.5 620.5
agh-h-spr17 1 460 460
lums-spr18 1 487 487

muni-fi-spr17 2 515 515
muni-fsps-spr17c 6 130.1 6.5
muni-pdf-spr16 5 909 2

nbi-spr18 3 260 34
pu-d5-spr17 6 389.7 12
pu-proj-fal19 4 2207 51

yach-fal17 3 156.3 165

Late

agh-fal17 4 1876.66 10
bet-spr18 4 340.75 140
iku-spr18 5 556.4 56
lums-fal17 1 502 502
mary-fal18 3 319.6 5

muni-fi-fal17 1 535 535
muni-fspsx-fal17 4 326.4 32
muni-pdfx-fal17 6 1854.83 2.5

pu-d9-fal19 7 816.42 8
tg-spr18 1 676 676

Merging students Merging students with the same curricular plans allows to
reduce the number of variables and constraints on the student sectioning part
of the problem. Figure 5 shows the percentage of the total number of variables
required to model students using different clusters. The clusters represent
the percentage of the total number of variables required to model students
with different curricular plans per instance. However, this type of clusters
cannot be applied in practice since they would remove feasible solutions (see
Example 3). Alternately, the GCD clusters represent the cluster divided using
the GCD method discussed above. Recall that the number of variables needed
to model students is influenced by the number of classes per enrolled course
(see Example 10).

Most instances have a significant bottleneck in the creation of clusters
caused by the hard limit on the number of students enrolled in a class. On
average the GCD clusters are 40 points worse than a normal cluster. On av-
erage, one can reduce the number of variables relating to students up to 23%.
Instances nbi-spr18 and yach-fal17 have a larger reduction on the number of
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Fig. 5: Percent decrease in the number of variables required to model students
increasing clustering strategy. The grey circles represent timed out instances
when using GCD clusters.

variables (around 50%). On the other hand, instances pu* have the smallest
reduction (14%).

5.2.2 MaxSAT Solving

In this section, we compare the different CNF encodings and the advantages of
solving the course timetabling problem separated from the student sectioning
problem.

Figure 6 compares the total number of hard clauses with the number of
soft clauses generated by our encodings. It is clear that the number of soft
clauses is considerably smaller for all instances. On average, the number of
soft clauses is 2% of the global number of clauses. Most instances that timed
out have a higher percentage of soft clauses but these instances also have a
larger overall number of soft clauses. With this difference in mind, we focused
more on the hard constraints as they are dominant.

We can find a solution within the time limit for 20 out of 30 instances using
our best approach (see Table 2). However, the solver was not able to prove
optimality within the time limit on any of the instances.

Figure 7 compares the number of hard clauses generated by the CNF en-
coding and the CPU time needed to find the best solution for each instance
considering two approaches to encode the problem (direct and linked). In gen-
eral, one can see that the instances with a larger number of hard constraints
take a larger amount of time. Using the linked encoding reduces the number
of constraints needed per instance. Therefore, one can solve 9 more instances
within the time limit. Most of the unsolved instances actually have two orders

119

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



A. Lemos et al.

 90

 92

 94

 96

 98

 100

pu-d5-spr17

bet-fal17

lum
s-spr18

pu-llr-spr17

lum
s-fal17

m
uni-pdf-spr16c

m
uni-fsps-spr17c

nbi-spr18

m
uni-pdf-spr16

agh-ggis-spr17

agh-fs-spr17

m
ary-fal18

agh-ggos-spr17

yach-fal17

m
uni-f-spr16

m
uni-f-fal17

bet-spr18

agh-fal17

pu-d9-fal19

agh-h-spr17

iku-spr18

iku-fal17

tg-spr18

pu-proj-fal19

m
uni-fspsx-fal17

m
uni-pdfx-fal17

m
uni-f-spr17

m
ary-spr17

m
uni-fsps-spr17

tg-fal17

%
 #

 c
la
u
s
e
s

Hard Clauses Soft Clauses

Fig. 6: Percentage of soft clauses for each instance. The grey circles represent
timed out instances.

of magnitude more constraints than the other instances (top right corner of
Figure 7). Most of these constraints result from the MaxBlock and MaxBreak
constraints (to be discussed further on).

Figure 8 compares the number of hard clauses generated by the CNF en-
coding for each approach tested. One can see that the direct encoding requires
much more constraints to encode the same instance. The direct encoding re-
quires, on average, 7 × 1010 more constraints than the linked encoding. This
can be explained by the fact that most constraints are only related either to
an hour, day or week. There are few constraints that involve all weeks, days
and hours simultaneously. Furthermore, one can reduce the need to combine
all these with the usage of auxiliary variables (e.g. sd). For this reason, the
usage of only one variable for the time allocation problems creates unnecessary
constraints.

Figure 9 compares the time spent to find the best solution for each approach
tested. One can see that the direct encoding requires only a few more seconds
to find a solution of the same cost for each instance that both approaches solve
within the time limit. The direct encoding requires, on average, 200 seconds
more than the linked encoding. Furthermore, we can clearly see that most
instances that timed out with the direct encoding are solved in only a few
seconds by the linked encoding (bottom right of Figure 9). On average, the
linked encoding requires only 2,000 seconds to solve the timed out instances.

In case of the linked encoding, for most instances, the solver requires only a
short amount of time to produce the best solution. Figure 10 shows a compar-
ison between the normalized cost of the best found solution and the CPU time
in seconds. The figure shows the normalized cost since each instance has its
own weights on the optimization criterion and therefore would be impossible
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Fig. 8: A comparison between the linked and the direct encodings in terms of
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limit.

to compare them in the same graph. One can see that the best solution, for
most instances, is found early on (within 2,000 seconds). In fact, only 5 out
of 20 instances improve their quality after 2,000 seconds. The quality of the
solution does not improve until the time out is reached.

MaxBlocks and MaxBreaks. Figure 11 shows the percentage of clauses gener-
ated from MaxBlocks and MaxBreaks constraints for each instance. One can
see that these constraints generate a significant number of additional clauses.
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In the worst case, we need to generate over 35% more clauses to deal with these
constraints. Note that we cannot solve the 10 instances with a higher number
of hard clauses (see Figure 8). In most cases, the high number of constraints
is caused by MaxBlocks and MaxBreaks constraints. The exceptions are the
instances from iku*, which have the largest number of classes. In fact, the size
of our exactly one constraints is much larger than 26 which is the limit found
by Bittner et al. [2] for solvable instances.

Decomposing UCTTP. Our best approach decomposes the UCTTP into two
sub-problems: (i) course timetabling and (ii) student sectioning. This decom-
position may remove the optimal solution. However, it does not remove any
feasible solution. The goal of decomposition is to reduce the size of the prob-
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lem, especially for instances with a large number of clusters of students. The
decomposition allows us to solve 3 more instances. Figure 12 compares the
performance of the solver before and after decomposing the problem, in terms
of CPU time.

5.2.3 Local Search

Our straightforward implementation of this method allows to improve the
quality of the solution without adding significant overhead. On average, the
method requires only 6% of the overall execution time of the approach. Fig-
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Fig. 13: A comparison of the cost, in terms of students conflicts, before and
after applying the LS procedure.

ure 13 compares the number of conflicts, before and after this procedure. On
average the procedure reduces the number of conflicts by 22%.

5.3 Final Results

Table 2 shows the best cost found by our best approach per optimization
criteria and instance. Note that the penalties associated with the three op-
timization criteria (student conflicts, allocation penalty, and additional soft
constraints) vary from instance to instance. Therefore, it is difficult to com-
pare them. Nevertheless, one can see that the student conflict criteria, overall,
is the most costly even with the LS method. The muni* instances are on av-
erage the worst in terms of room allocation penalty. This can be explained by
the normal structure of these instances since they have few room options (Rc)
and a large penalty associated.

6 Conclusion and Future Work

This paper discusses the results obtained by our approach in ITC 2019. The
resulting tool UniCorT is able to solve two thirds of the benchmark instances
from ITC 2019 within the time limit of 6,000 seconds. This tool placed among
the five finalists. UniCorT takes advantage of two pre-processing techniques
that search for: (i) self-contained sub-instances and (ii) clusters of students.
The first method is able to divide, on average, an instance into 3 sub-instances.
The clustering of students is able to reduce the number of variables used, on
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Table 2: The cost per optimization criteria and instance.

Instance Cost Students Time Room Distribution
agh-fis-spr17 35139 3555 2248 2312 404

agh-ggis-spr17 194138 26097 2737 22270 2029
bet-fal17 UKN
iku-fal17 UKN

mary-spr17 51147 1114 1376 805 7290
muni-fi-spr16 19314 3286 352 628 120

muni-fsps-spr17 211142 2040 58 292 360
muni-pdf-spr16c 567900 15678 58316 27600 4361

pu-llr-spr17 68003 7642 1169 30
tg-fal17 6774 0 1792 30 158

agh-ggos-spr17 79745 8230 6045 9045 358
agh-h-spr17 55887 1848 1442 1039 2656
lums-spr18 594 0 0 509 17

muni-fi-spr17 18080 3212 284 958 21
muni-fsps-spr17c 618217 6048 411 1027 141
muni-pdf-spr16 310994 7853 38680 27094 900

nbi-spr18 49924 7196 5946 9208 5
pu-d5-spr17 UKN
pu-proj-fal19 UKN

yach-fal17 32198 4856 8 1008 687

agh-fal17 UKN
bet-spr18 UKN
iku-fal18 UKN

lums-fal17 1151 0 105 626 63
mary-fal18 44097 4107 596 665 234

muni-fi-fal17 19683 3810 86 289 9
muni-fspsx-fal17 UKN
muni-pdfx-fal17 UKN

pu-d9-fal19 UKN
tg-spr18 31900 0 1942 3996 1201

average, by 23%. The LS method, in the end, is able to reduce the number of
conflicts by 22% without adding a significant overhead.

UniCorT solves the course timetabling and student sectioning problems
separately in order to reduce the size of the problem and thus the execution
time. This decomposition does not remove any feasible solutions. However, it
may remove the optimal solution but allows us to solve more instances within
the time limit.

The MaxSAT encodings applied in UniCorT encode MaxBlock and
MaxBreaks constraints by blocking all invalid assignments. In order to block
the invalid assignments, we generate all block combinations possible. How-
ever, this method proves inefficient for large instances. For this reason, we
plan to work on new ways of encoding these constraints in such a way we
avoid enumerating all possible blocks. More precisely, we can take advantage
of symmetries in the blocks structure to reduce the clauses generated.
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An Online Learning Selection Hyper-heuristic for
Educational Timetabling

Alexander Steenson · Ender Özcan ·
Ahmed Kheiri · Barry McCollum ·
Paul McMullan

Abstract Examination and course timetabling are computationally difficult
real-world resource allocation problems. In 2007, an International Timetabling
Competition (ITC) consisting of three classes; (i) examination timetabling, (ii)
post enrollment-based, and (iii) curriculum-based course timetabling was or-
ganised. One of the competing algorithms, referred to as CPSolver, successfully
achieved the first place in two out of these three tracks. This study investigates
the performance of various multi-stage selection hyper-heuristics sequencing
low-level heuristics/operators extending the CPSolver framework which exe-
cutes hill climbing and two well-known local search metaheuristics in stages.
The proposed selection hyper-heuristic is a multi-stage approach making use
of a matrix which maintains transitional probabilities between each low-level
heuristic to select the next heuristic in the sequence. A second matrix tracks
the probabilities of ending the sequence on a given low-level heuristic. The best
configuration for the selection hyper-heuristic is explored tailoring the heuris-
tic selection process for the given timetabling problem class. The empirical
results on the ITC 2007 problem instances show that the proposed selection
hyper-heuristics can reduce the number of soft constraint violations, producing
improved solutions over CPSolver as well as some other previously proposed
solvers, particularly, in examination and curriculum-based course timetabling.
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1 Introduction

Educational timetabling represents a class of challenging real-world problems
which are still of interest to many researchers and practitioners. The Interna-
tional Timetabling Competition (ITC) 2007 provided researchers with models
of the problems faced, which incorporate an increased number of real-world
constraints1. In 2007 the ITC was composed of three tracks2:

– Examination Timetabling where a set of exams must be assigned into
a predefined examination time period.

– Post Enrolment-based Course Timetabling where a course timetable
must be constructed after students have selected and enrolled onto a set
of courses.

– Curriculum-based Course Timetabling where university lectures, for
several courses, must be assigned a room and timeslot within a set of
restrictions.

The tracks describe common problems that universities face around the
world when scheduling exams or courses. When scheduling these timetables,
no hard constraints and as little soft constraints as possible should be violated.
Violating no hard constraints is the top priority when creating a timetable, in
order to make it feasible and therefore workable. For example, whilst schedul-
ing for an examination timetable, no student can be assigned to take more
than one exam at any given time, and no more students than available seats
can be assigned to a given room. Soft constraints however, may be violated
and still result in a feasible timetable. Soft constraints represent preferences
whilst scheduling, to aid in the smooth running and efficiency of the timetable.
An example of a soft constraint in the Examination track is ‘two exams in a
row’; it is preferred if students would not take multiple exams ‘back to back’.
Therefore, the aim is to minimise soft constraints whilst not violating hard
constraints.

The ITC 2007 released a number of data instances to the research com-
munity throughout the duration of the competition. This gave researchers the
opportunity to develop new and innovative approaches to solving the prob-
lems outlined in each track, on real life datasets. As a result, many successful
methods have been developed to solve these types of problems. Five finalists
were selected based on their submitted results on the released datasets. The
solvers developed by the finalists were then judged further using a set of ‘hid-
den’ datasets that were not released for testing and development, and again
using the previously released datasets. It is important to note that computa-
tion time was limited on each solver ensuring a fair outcome. The winner of the
Examination track and the Curriculum-based Timetabling track was Thomàš
Müller, who developed a hybrid constraint-based solver, known as CPSolver,
as part of his PhD to compete in all three competition tracks [23]. This single
solution framework was capable of constructing and refining solutions for each

1 http://www.cs.qub.ac.uk/itc2007/index.htm
2 http://www.cs.qub.ac.uk/itc2007/index files/competitiontracks.htm
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track, by employing a series of algorithms, including hill climbing and local
search metaheuristics [29], namely, Great Deluge and Simulated Annealing,
in stages, where each operate over feasible, though not necessarily complete
solutions. Those algorithmic components may need to be heavily modified and
reconfigured to be applied to another problem [17].

Hyper-heuristics [10] are high-level control methods used in heuristic opti-
misation that operate over the search space formed by a set of low-level heuris-
tics rather than the search space of solutions, directly. The hyper-heuristics are
classified into two as either being generative (generating low-level heuristics) or
selective (selecting from a pool of low-level heuristics). This paper will be focus-
ing purely on the latter one. A selection hyper-heuristic attempts to choose the
right method or sequence of (meta)heuristics in a given situation at each step
or stage during the search process [4,12]. This paper investigates the effects of
implementing a sequence-based heuristic selection algorithm within Thomàš
Müller’s CPSolver framework to uncover Hidden Markov chains and gener-
ate heuristic sequences tailored to the problem instance. This paper provides
an explanation of the implementation of the sequence-based hyper-heuristic
within the CPSolver framework. Finally, results regarding the effectiveness of
the implemented hyper-heuristic against Thomàš Müllers original ITC 2007
results, along with the results achieved by the other ITC 2007 finalists and
some post ITC 2007 solutions can be found at the end of this paper.

2 Related Work

Many approaches have been taken to solve the problem instances provided
as part of the competition. These approaches range from hyper-heuristics ca-
pable of solving each instance from each track with minimal domain specific
requirements, to domain-specific solvers which are only capable of solving the
instances of one given track. A number of different methods have been de-
veloped to solve a problem for each track individually. For the Examination
track the following approaches have been proposed: graph colouring construc-
tive hyper-heuristic [28], tabu search [11], simulated annealing [13] and cell
division [27]. For the Post Enrolment-based Course Timetabling track: lo-
cal search [6,8,30,31], ant colony [25], simulated annealing [7,20] and tabu
search [14]. Finally for the Curriculum-based Course Timetabling: adaptive
tabu search [22], iterative local search [22], threshold accepting metaheuristic
[16] and repair-based heuristic search [9].

As mentioned above, one hyper-heuristic approach, winning two tracks
was Thomàš Müller’s three phase constraint-based solver [23]. This single so-
lution framework was capable of constructing and refining solutions for each
track, by employing a series of algorithms based on local search techniques
that operate over feasible, though not necessarily complete, solutions. The
framework only ever operates over a feasible solution space, ensuring all hard
constraints are satisfied, by using a series of algorithms operating using local
search techniques. The CPSolver framework consists of multiple phases run se-
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quentially, namely the construction phase, the Hill Climbing (HC) phase, the
Great Deluge (GD) phase and finally the Simulated Annealing (SA) phase.
The construction phase generates a complete initial solution by performing
an iterative forward search algorithm that uses conflict-based statistics [23].
A local optimum is then obtained using hill climbing and once an improving
solution can no longer be found the great deluge phase begins. Oscillations
of the bounds within great deluge are used to allow worsening solutions, fa-
cilitating the escape of the local optimum. The simulated annealing stage is
optional and is not used within the Examination track to increase the speed of
convergence. Once simulated annealing has met its termination criteria the hill
climbing phase is continued to converge back to a local optimum. As a conse-
quence, the framework constructs a feasible solution and proceeds to improve
upon it.

Implemented within each of the perturbative phases are a number of low-
level neighbourhood heuristics selected at random. These low-level heuristics
are one of the few domain-specific requirements needed within the framework.
This paper seeks to improve on this section of the solver by removing the
random aspect of selecting low-level heuristics by introducing online learning
to create sequences of low-level heuristics to be applied to the current solution.
By removing the random selection, it is possible to target low-level heuristics
that perform better than others, decreasing the number of iterations needed
to achieve a good solution value. This technique has not before been applied
to solve the ITC 2007 problem instances over all thee tracks.

Whilst CPSolver method won the Examination track and Curriculum-
based Timetabling track, it came fifth in the Post Enrolment-based Course
Timetabling track. It is therefore worth noting the techniques capable of pro-
ducing higher quality solutions.

One notable technique put forward by Atsuta [1] applied a general-purpose
solver. Problem data instances were represented as linear 0-1 inequalities,
quadratic 0-1 inequalities, and all-different constraints. Using predetermined
weights for hard and soft constraints, a tabu search combined with an iterated
local search is used to solve the given instance. The constraint weightings are
dynamically controlled during the search process to improve the performance
of the general-purpose CPS. It is also worth noting that this technique is not
domain specific, and to demonstrate the capabilities of the solver it was entered
into each track of the competition producing high quality results on all three
tracks. The solver was placed third in the Examination and Curriculum-based
tracks, and achieved second place in the Post Enrolment track.

Since the end of the second International Timetabling Competition there
have been a number of papers released outlining techniques used to solve the
problem instances used within the competition. One of the advantages for re-
searchers evaluating techniques post competition is that all the datasets are
available, allowing researchers to tailor frameworks to the data without the
time pressure of the competition. On six of the Examination datasets, a tech-
nique used to provide lower solution values than all other submissions was
proposed in [5]. Here a two-stage solver was implemented. The first stage of
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the solver employs a construction algorithm using the existing adaptive order-
ing heuristic [3]. The next stage aims to improve the solution created in the
first stage. An extended great deluge algorithm technique is used, applying a
reheating mechanism after a set number of non-improving moves. They per-
formed 51 runs for each data instance within the ITC 2007 Examination track
to compare with the other competitors’ 10 runs of each data instance in the
ITC 2007. However, they do acknowledge this in the paper. It is also not clear
on the specifications of the computer the instances were solved on, and there
is no mention if the benchmarking program issued by the ITC 2007 was used
to ensure a fair comparison.

3 A Multi-stage Sequence-based Hyper-heuristic Approach

Müller [23]’s approach to timetabling is a multi-stage approach using the CP-
Solver framework, where a different search algorithm is utilised at each fixed
stage. Also, this approach used a different set of low-level heuristics/operators
implemented for each timetabling problem class in the ITC 2007 competition.
At each step in a stage, a random heuristic is selected and applied to the
incumbent solution producing a new solution. To maximise the possibility of
making even further improvements to the newly created solutions, learning can
be utilised guiding the heuristic selection. Hence the random heuristic selection
method is altered to incorporate online learning. Online learning techniques
allow for learning to take place whilst a problem instance is being solved.
Given that there are three tracks presented within the competition, each will
have multiple problem instances with different characteristics, hence online
learning is likely to improve the performance of a no-learning approach Incor-
porating an online learning method into the selection hyper-heuristic ordering
the execution of low-level heuristics can generate complex sequences (which
would correspond to new heuristics/operators) enabling creation of improved
solutions in reduced time.

The proposed approach is based on the same CPSolver, hence it is still a
multi-stage approach. The selection hyper-heuristics employed at each stage
is not changed and assigns a score to each LLH, maintains those scores based
on reinforcement learning and then it chooses one of the low-level heuristics
based on their scores using the heuristic selection method. The components
and variants of the proposed approach is described in the following subsections.

3.1 Low-level Heuristics

The same set of low-level heuristics (LLHs) as suggested in [23] are employed
for solving the timetabling problems as summarised below for each ITC 2007
track.

1. Examination timetabling: Exam swap, period swap, room swap, period
change, room change, period and room change.

133

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



Alexander Steenson et al.

2. Post enrollment-based course timetabling: Time move, room move, event
move, event swap, precedence swap (violation oriented move with consid-
ering the precedence constraints).

3. Curriculum-based course timetabling: Time move, room move, lecture move,
room stability move, min working days move, curriculum compactness
move.

3.2 Heuristic Selection

Kheiri and Keedwell [17] provided an effective sequence-based selection hyper-
heuristic illustrated its performance across a number of high school timetabling
problem instances.

Commonly, sequence-based heuristic selection algorithms work by gener-
ating a completed sequence of low-level heuristic (LLH) operators to be se-
quentially applied to the current solution, creating a new candidate solution.
This can lead to the scenario of constructing a sequence of length n, applying
each LLH to the current solution and reverting back if the solution value is
not accepted by the acceptance strategy, e.g. simulated annealing. In an at-
tempt to eliminate reverting back n neighbourhood changes when a sequence
is rejected, when the next LLH in the sequence is selected it is immediately ap-
plied to find a neighbouring solution. If the neighbouring solution is accepted,
it is officially added to the sequence, otherwise the LLH is not added to the
current sequence, and the next LLH is selected. Implementing the sequence
construction in this manner could help guide the sequence creation process
and discovery of Hidden Markov Chains.

Sequences are constructed by maintaining two matrices. The first matrix is
designed to maintain a performance score for each possible heuristic transition,
we will refer to this as TransScore. We are then capable of selecting the
next LLH using these scores. For example, assume n low-level heuristics are
implemented. Also, assume the unfinished sequence of [llhi, llhj ] is constructed
and the next LLH selected, using a Roulette Wheel or any other heuristic
selector, is llhk. From this, assume heuristic llhk is applied and produced
an improved solution. The score value at TransScore[j, k] is updated and the
current sequence becomes [llhi, llhj , llhk]. If llhk did not produce an improving
solution but was still accepted, the score values remain the same and the
sequence is again updated to become [llhi, llhj , llhk]. The starting scores for
each heuristic transition is 1, that is, TransScore[llhi, llhj ] = 1,∀ i, j.

The second matrix stores the score values of ending the sequence on the cur-
rent LLH selected. We will refer to this matrix as EndScore. For example, with
the same implementation and sequence construction in the example above,
when llhk is selected the scores at EndScore[llhk, 0] and EndScore[llhk, 1]
are used to determine if the sequence is terminated at that heuristic. If the
sequence is to terminate at llhk then the scores EndScore[i, 0], EndScore[j, 0]
and EndScore[k, 1] are all updated. The starting scores for each acceptance
strategy for every low-level heuristic is 1, that is, EndScore[llhi, j] = 1,∀ i, j.
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Fig. 1: Flowchart of the CPSolver

This learning method is implemented into the CPSolver framework to select
heuristics instead of the current random selection. The figures displayed below
compare the stages that the CPSolver takes in the 2007 ITC submission against
the stages the CPSolver takes with the new proposed implementation.

Given the two scoring probability matrices described above, a selection
strategy is required to select the next LLH in the sequence and to determine if
the sequence is terminated. Generally, the selection process can be categorised
into proportional and elitist strategies. Proportional strategies take into con-
sideration the probabilities of each heuristic being selected and selects the
heuristic accordingly. This allows diversification within the heuristics selected
but takes longer to converge. Elitist methods simply take the heuristic with the
best score associated to it. This increases convergence but eliminates any di-
versification throughout the search. The heuristic selection strategies explored
in this paper are: Roulette Wheel selection and Tournament selection. Whilst
a general aim is to reduce computation time of the solver, and both of these
selection methods fall under the proportional strategy, taking the heuristic
with the highest score each time does not allow for enough diversification for
the problem instances.

Roulette Wheel selection (RW) gives an individual i the probability of
being selected p(i) proportional to its fitness f(i) where [15]:

p(i) =
f(i)∑n
j=1 f(j)

(1)

Tournament selection (TO) consists of selecting k individuals at random
and then ranking them best to worst. The best individual is then selected to
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Fig. 2: Flowchart of the new sequence-based hyper-heuristic solver

enter the sequence [15]. Tournament selection has the advantage of maintaining
diversification whilst converging faster than Roulette Wheel.

3.3 Reward Scheme

The performance of the sequence-based hyper-heuristic can vary depending
on the learning strategy implemented. This paper explores three rewarding
schemes as explained below [17].

– Linear reward scheme (LI): The matrices values are incremented linearly
with a reward of 1 when an improving solution is obtained. The strat-
egy does not take into consideration the amount to which the solution is
improved, but simply acknowledges that an improving solution has been
found.

– Non-linear reward scheme (NL): The matrices values are incremented non-
linearly by et/c, where t is the time elapsed and c is a predetermined
constant. This reward system allocates a larger reward to sequences that
find an improving move later on in the search.

– Delta reward scheme (DE): The matrices values are incremented according
to how much the sequence improved on the overall solution value, giving
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larger rewards to sequences that make a bigger impact on the solution
value. The heuristic selection can then continue making sequences that
target the heuristics that make the biggest difference to the solution value.

3.4 Stage Options

CPSolver is used as a multi-stage approach, constructing a (feasible) solution
and then improving upon it using a hill climbing and/or a local search meta-
heuristic. During the construction phase, the solver can sometimes run into
the issue where it can no longer successfully assign values to variables causing
it to be idle. This is very noticeable on data instances 3 and 4 on the Exam-
ination track, with Müller being unable to obtain a feasible solution on some
of his runs. To combat this issue, if the construction phase does not make
an improving move in 200 iterations the current solution will be reset. The
construction phase will then restart and build a new solution. This method
proved to be reliable as we managed to obtain feasible solutions on all data
instances in the Examination track.

After the construction phase, the hyper-heuristic follows a fixed stage struc-
ture of Hill Climbing (HC), Great Deluge with re-rising level (GD) and then
the optional stage Simulated Annealing with reheating (SA) (Thomàš Müller
noted that Simulated Annealing is not used for the Examination timetabling
track due to its slow computation time [23]). A selection hyper-heuristic con-
tains two key components: heuristic selection and move acceptance. CPSolver
provides a multi-stage selection hyper-heuristic framework where a different
move acceptance method can be used at each stage while the heuristic se-
lection is maintained. The move acceptance methods significantly affects the
performance as compared to heuristic selection within hyper-heuristics [26].
Since we have only 2 move acceptance methods, we explored the performance
of the proposed approach with different options for the stages where we either
use HC or not or a move acceptance. Hence every stage ordering using (a set
of) two or single move acceptance method(s) is tested along with using HC or
not in the first stage, yielding six different options: HC-GA-SA, HC-SA-GD,
GD-SA, SA-GD, GD and finally SA.

The same suggested parameter settings for each ITC2007 track provided
in [23] for the HC (maximum number of iterations without improvement), GD
(upper bound for the level, lower bound for the level, rate of decrease), SA
(initial temperature, number of steps spent at each temperature, geometric
cooling rate, reheating rate) algorithms are used during the experiments.

4 Configuring the Sequence-based Hyper-heuristic Approach

All configurations of the sequence-based hyper-heuristic approach are evalu-
ated using 4 selected problem instances from each track of the competition.
Each experiment is run 10 times for the appropriate amount of time (247 sec-
onds) which was obtained using the benchmarking software supplied by the
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ITC 2007. This helps create a level playing field across all competition submis-
sions and allows for the comparison of results without having to factor in com-
puter speed. A total of 132 hours were spent configuring our hyper-heuristic
approach, and all the runs were performed on a Windows 10 machine with an
Intel Core i5-6400 2.70GHz processor with 8GB of RAM. When testing for the
acceptance strategy, heuristic selection strategy and reward mechanism, the
data instances used for the Examination timetabling track were 1, 2, 5 and 6.
For the Post Enrolment timetabling track the data instances 3, 4, 6 and 8 were
used. Finally, for the Curriculum-based timetabling track the data instances
3, 5, 7 and 8 were used. To score the results of each run, a given instance was
allocated a rank based on its overall solution value. The solution value with
the lowest score was given a ranking score of 1, the next highest will get a
ranking score of 2 etc. In the case of a tie an average rank was assigned. For
example, if the third highest solution value was 5 and this solution value was
obtained 3 times, a ranking score of 4 would be given to each solution. The
ranking scores would then continue from 6. The score for a given strategy on
a given instance is the mean ranking score for that instance. The overall score
for a given strategy is then given by the mean score obtained for each data
instance, and the strategy with the lowest score is then taken to be the best.

4.1 Stage Option Experiments

The incremental configuration for the proposed approach first experimented
with different stage options: HC-GA-SA, HC-SA-GD, GD-SA, SA-GD, GD
and finally SA. For all three tracks the heuristic selection method was set to
Roulette Wheel with a linear reward method for each option. Table 1 shows
the ranking of each stage option for each selected benchmark instance for
each track. Table 2 shows the overall ranking of the acceptance strategies for
each track. From the tables, we can see for all three tracks, Great Deluge
by itself performed the best. However, Table 2 demonstrates that the second
best stage option is HC-GD-SA, GD-SA and SA-GD for the examination,
post enrollment-based and curriculum-based course timetabling, respectively.
Hence, those methods are fixed for the next set of experiments.

4.2 Testing the Heuristic Selection Methods and Reward Mechanisms

During implementation it was noticed that the heuristic selection method and
reward mechanism were closely related with the combination dramatically af-
fecting the scores. This means we were not able to optimise them sequentially,
they had to be done simultaneously. We also tested each combination of heuris-
tic selection and reward mechanism for the top two ranking sequence of ac-
ceptance strategies obtained from the section above. Table 3 shows the overall
ranked scores for each track. We can see from the table that the Examination
track performed best by a significant margin, operating with a delta-based
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Table 1: Acceptance strategy ordering per instance ranking

Examination Acceptance Strategy Ordering

Instance 1 Instance 2 Instance 5 Instance 6

Order Score Order Score Order Score Order Score

GD 9.30 SA 21.60 GD 5.60 GD 22.20
HC-GD-SA 12.70 GD 23.60 SA 23.00 GD-SA 28.35
SA 35.75 HC-GD-SA 27.15 HC-GD-SA 30.15 SA 30.90
SA-GD 37.10 HC-SA-GD 31.40 GD-SA 40.05 HC-GD-SA 31.40
GD-SA 40.15 SA-GD 37.30 SA-GD 40.60 SA-GD 34.65
HC-SA-GD 48.00 GD-SA 41.95 HC-SA-GD 43.60 HC-SA-GD 35.50

Post Enrolment Acceptance Strategy Ordering

Instance 3 Instance 4 Instance 6 Instance 8

Order Score Order Score Order Score Order Score

GD 17.20 GD 18.05 GD 17.40 GD 12.75
HC-GD-SA 18.45 HC-GD-SA 25.00 GD-SA 22.90 GD-SA 28.00
GD-SA 21.25 GD-SA 26.95 HC-GD-SA 27.30 HC-SA-GD 28.65
SA-GD 35.20 SA-GD 27.40 HC-SA-GD 30.05 SA-GD 29.30
HC-SA-GD 36.00 HC-SA-GD 33.40 SA-GD 36.00 HC-GD-SA 29.70
SA 54.90 SA 52.20 SA 49.35 SA 54.60

Curriculum-based Acceptance Strategy Ordering

Instance 3 Instance 5 Instance 7 Instance 8

Order Score Order Score Order Score Order Score

GD 18.60 GD 17.35 HC-SA-GD 19.65 GD 16.65
GD-SA 22.30 GD-SA 22.40 GD 19.70 SA-GD 16.65
SA-GD 29.55 SA-GD 28.70 SA-GD 22.90 HC-SA-GD 30.45
HC-SA-GD 32.60 HC-GD-SA 31.30 SA 33.30 GD-SA 38.35
HC-GD-SA 34.70 HC-SA-GD 33.05 GD-SA 43.65 SA 39.30
SA 45.25 SA 50.20 HC-GD-SA 43.80 HC-GD-SA 41.60

Table 2: Acceptance strategy ordering overall ranking

Examination Post Enrolment Curriculum-based

Order Score Order Score Order Score

GD 15.18 GD 16.35 GD 18.07
HC-GD-SA 25.35 GD-SA 24.77 SA-GD 24.45
SA 27.81 HC-GD-SA 25.11 HC-SA-GD 28.94
SA-GD 37.41 SA-GD 31.98 GD-SA 31.68
GD-SA 37.62 HC-SA-GD 32.02 HC-GD-SA 37.85
HC-SA-GD 39.62 SA 52.76 SA 42.01

reward system with tournament heuristic selection and with Great Deluge as
the move acceptance. The Post Enrolment track performed best with a delta-
based reward system with Tournament heuristic selection and with Great Del-
uge followed by Simulated Annealing as the move acceptance ordering. It is
interesting to note that Great Deluge followed by Simulated Annealing ranked
second best during the move acceptance optimisation stage, running under a
linear reward with Roulette Wheel selection. This further indicates that the
performance reward mechanism and heuristic selection can be dependent on
the move acceptance. Optimising for one feature at a time may not lead to
the optimal configuration, however we are confident that testing the top two
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Table 3: The overall ranking of heuristic selection (H.S.) and reward scheme
(R.S.) pairs combined with top three sequence of low-level (meta)heuristics

Examination Post Enrolment Curriculum-based

R.S.-H.S. Order Score R.S.-H.S. Order Score R.S.-H.S. Order Score

DE-TO GD 24.20 DE-TO GD-SA 22.61 NL-RW GD 38.66
NL-TO GD 37.33 DE-TO GD 37.48 NL-TO SA-GD 39.56
LI-RW GD 42.38 DE-RW GD 55.17 LI-RW GD 44.09
NL-RW GD 42.77 NL-TO GD 57.34 LI-RW SA-GD 54.99
LI-TO GD 52.99 NL-TO GD-SA 58.36 LI-TO SA-GD 55.51
DE-RW GD 57.20 LI-TO GD-SA 58.42 DE-RW SA–GD 58.17
LI-RW HC-GD-SA 59.70 DE-RW GD-SA 63.59 DE-RW GD 60.62
DE-RW HC-GD-SA 79.09 LI-TO GD 65.94 NL-RW SA-GD 66.44
NL-TO HC-GD-SA 79.75 LI-RW GD 66.71 NL-TO GD 66.79
NL-RW HC-GD-SA 80.08 NL-RW GD 74.34 DE-TO SA-GD 68.47
DE-TO HC-GD-SA 80.78 NL-RW GD-SA 81.55 DE-TO GD 74.08
LI-TO HC-GD-SA 89.75 LI-RW GD-SA 84.49 LI-TO GD 98.61

ranked move acceptance orderings for each track is sufficient to produce the
optimal configurations. Finally, we can see from the table that a non-linear
reward mechanism with a Roulette Wheel selection and Great Deluge accep-
tance is the optimal configuration for the Curriculum-based track.

5 Experimental Results

Evaluation of the sequence-based hyper-heuristic approach was done using the
optimised configuration obtained above. We ran each data instance supplied
by the ITC for each track, that is: 8 instances for the Examination track, 16
instances for the Post Enrolment track and 21 instances for the Curriculum-
based track. To accurately and fairly compare the proposed hyper-heuristic to
the ITC competitors results all runs were performed under the same condi-
tions. That is, each instance was evaluated by performing 10 complete runs,
with a random seed, for the time allocated by the benchmarking program is-
sued by the ITC. All runs were performed using the same windows machine
as described in Section 4. The results described in Tables 4, 5 and 6 present
our experimental results; the average and best for the Sequence-based Hyper-
heuristic (SBHH). The tables also display the best scores of the competition
winners alongside the best solution value produced by Thomàš Müller’s code
over 100 runs on each instance.

5.1 Examination Timetabling Results

Table 4 displays the results described above along with the best results of two
bespoke approaches proposed after the competition finished. McCollum et al.
[5] performed their approach for a total of 51 runs per instance. Saber et al. [28]
performed their approach for a total of 21 runs per instance. The best scores for
each track are displayed in bold. It is worth noting that the approaches in [1,27,
28] are all single stage approaches, generating a single solution without further
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Table 4: Examination track experimental results, where entries in bold style
highlight the best performing algorithms

Instance
SBHH ITC-2007 Finalist Post ITC-2007

Avg. Best Müller [13] [1] [11] [27]
[23] 100
runs

[5] 51
runs

[28] 20
runs

Exam 1 4074.8 4008 4370 5905 8006 6670 12035 4356 4633 6234
Exam 2 391 385 400 1008 3470 623 3074 390 405 395
Exam 3 10060.9 9347 10049 13862 18622 - 15917 9568 9064 13002
Exam 4 19454.6 15870 18141 18674 22559 - 23582 16591 15663 17940
Exam 5 2758 2617 2988 4139 4714 3847 6860 2941 3042 3900
Exam 6 26867 26195 26950 27640 29155 27815 32250 25775 25880 27000
Exam 7 3978.8 3824 4213 6683 10473 5420 17666 4088 4037 6214
Exam 8 7228 7012 7861 10521 14317 - 16184 7565 7461 8552

improvement. Therefore, it is not completely fair to compare our results with
these methods. However, our approach outperformed all other methods on 5 of
the data instances. We also managed to provide better solutions than Müller’s
best over 100 runs on 7 of the data instances and outperformed Müller’s ITC
2007 finalist solution values on all 8 instances. This displays the capability
of the sequence-based hyper-heuristic for the Examination track. It would be
interesting to perform further runs on each data instance to see if our method
is capable of outperforming McCollum on instances 3 and 4, and Müller’s best
solution value achieved on instance 6 over 100 runs.

5.2 Post Enrolment-based Course Timetabling Results

Table 5 presents our experiments results for the Post Enrolment track of the
competition. The results are displayed in a tuple, with the first number in each
cell being the distance to feasibility (dtf) and the second being the overall
solution value. We also compared our results to the best results obtained from
state-of-the-art approaches developed after the competition [7,20,14,30,31].
The best scores for each track are displayed in bold.

The state-of-the-art approaches have made significant improvement within
the problem of post enrolment with Ceschia et al. [7] displaying 12 of the best
solution values making use of a single-step metaheuristic approach based on
simulated annealing. Whilst our proposed technique only manages to obtain
the joint best values for two of the instances, we managed to improve the solu-
tion value on 9 of Müller’s competition runs. This indicates that our proposed
method can produce improving solution compared to Müller’s original solver,
but it is not the best technique for solving Post Enrolment problems.

5.3 Curriculum-based Course Timetabling Results

Table 6 presents our experiments results for the final track, Curriculum-based
timetabling. We compared our results to 4 approaches developed after the end
of the competition: Tabu search and Iterative Local Search both developed
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Table 5: Post Enrolment track experimental results, where entries in bold style
highlight the best performing algorithms

Ins.
SBHH ITC-2007 Finalist Post ITC-2007

Avg. Best Müller [6] [1] [8] [25]
[23] 100
runs

[7] 30
runs

[20] [14] [30] [31]

1 153, 2259 0, 1810 0, 1861 0, 571 0, 61 0, 1482 0, 15 0, 1330 0, 59 0, 1166 0, 501 0, 650 0, 630
2 417, 2229 119, 2233 39, 2174 0, 993 0, 547 0, 1635 0, 0 0, 2154 0, 0 0, 1665 0, 342 0, 470 0, 450
3 0, 292 0, 234 0, 272 0, 164 0, 382 0, 288 0, 391 0, 205 0, 148 0, 251 0, 3770 0, 290 0, 300
4 0, 462 0, 386 0, 425 0, 310 0, 529 0, 385 0, 239 0, 394 0, 25 0, 424 0, 234 0, 600 0, 602
5 0, 42 0, 9 0, 8 0, 5 0, 5 0, 559 0, 34 0, 0 0, 0 0, 47 0, 0 0, 35 0, 6
6 0, 236 0, 76 0, 28 0, 0 0, 0 0, 851 0, 87 0, 13 0, 0 0, 412 0, 0 0, 20 0, 0
7 0, 20 0, 5 0, 13 0, 6 0, 0 0, 10 0, 0 0, 5 0, 0 0, 6 0, 0 0, 30 0, 0
8 0, 20 0, 0 0, 6 0, 0 0, 0 0, 0 0, 4 0, 0 0, 0 0, 65 0, 0 0, 0 0, 0
9 922, 2103 433, 2351 162, 2733 0, 1560 0, 0 0, 1947 0, 0 0, 1895 0, 0 0, 1819 0, 989 0, 630 0, 640
10 773, 2365 490, 2280 161, 2697 0, 2136 0, 0 0, 1741 0, 0 57, 2440 0, 3 0, 2091 0, 499 0, 2349 0, 663
11 0, 635 0, 437 0, 263 0, 178 0, 548 0, 240 0, 547 0, 347 0, 142 0, 288 0, 246 0, 350 0, 344
12 0, 825 0, 698 0, 804 0, 146 0, 869 0, 475 0, 32 0, 453 0, 267 0, 474 0, 172 0, 480 0, 198
13 0, 608 0, 302 0, 285 0, 0 0, 0 0, 675 0, 166 0, 74 0, 1 0, 298 0, 0 0, 46 0, 0
14 0, 545 0, 82 0, 110 0, 1 0, 0 0, 864 0, 0 0, 2 0, 0 0, 127 0, 0 0, 80 0, 35
15 0, 244 0, 0 0, 5 0, 0 0, 379 0, 0 0, 0 0, 0 0, 0 0, 108 0, 0 0, 0 0, 0
16 0, 167 0, 67 0, 132 0, 2 0, 191 0, 1 0, 41 0, 6 0, 0 0, 138 0, 0 0, 0 0, 140

Table 6: Curriculum-based track experimental results, where U indicates un-
defined and entries in bold style highlight the best performing algorithms

Ins.
SBHH ITC-2007 Finalist Post ITC-2007

Avg. Best Müller [22] [1] [16] [9]
[23] 100
runs

[16] 30
runs

[22]
TS

[22]
ILS

[2] [19]

1 5 5 5 5 5 5 10 5 5 5 5 5 13
2 68 48 51 55 50 111 111 43 91 55 48 75 43
3 86 76 84 71 82 128 119 72 108 90 76 93 76
4 42 35 37 43 35 72 72 35 53 45 41 45 38
5 336 309 330 309 312 410 426 298 359 315 303 326 314
6 60 35 48 53 69 102 130 41 79 58 54 62 41
7 26 10 20 28 42 57 110 14 36 33 25 38 19
8 43 39 41 49 40 77 83 39 63 49 47 50 43
9 108 101 109 105 110 150 139 103 128 109 106 119 102
10 25 11 16 21 27 71 85 9 49 23 23 27 14
11 0 0 0 0 0 0 3 0 0 0 0 0 0
12 353 333 333 343 351 442 408 331 389 330 324 358 405
13 78 59 66 73 68 622 113 66 91 71 68 77 68
14 60 55 59 57 59 90 84 53 81 55 53 59 54
15 85 75 84 71 82 128 119 U U U U 87 U
16 45 38 34 39 40 81 84 U U U U 47 U
17 88 75 83 91 102 124 152 U U U U 86 U
18 84 75 83 69 68 116 110 U U U U 71 U
19 71 64 62 65 75 107 111 U U U U 74 U
20 53 34 27 47 61 88 144 U U U U 54 U
21 116 100 103 106 123 174 169 U U U U 117 U

in [22,2,19]. We were also able to compare our solutions to the best solution
values obtained by Geiger [16] over 30 runs for each instance, with each run
allowing 100,000,000 evaluations. Solution values are not available for all in-
stances for each approach. The solution values we were not able to obtain are
represented with a ‘U’ for unknown and all the best values for a given instance
are displayed in bold. Our approached achieved 10 of the best solution values
across all 21 instances. We managed to make improvements on Müller’s com-
petition final solutions across 15 of the instances. We also made improvements
on 4 instances compared to Müller’s 100 runs.
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Fig. 3: Overall performance comparison of Müller’s approach and SBHH
based on average ranking scores for the Examination, Post Enrolment and
Curriculum-based tracks of ITC 2007

5.4 Performance Comparison to Müller’s Approach

In addition to comparing the best solution values produced by the proposed
and various other approaches, we have calculated the average ranking scores
for each track based on Müller’s and our solutions obtained for ITC 2007.
We calculated the ranking scores in the same manner as the ITC calculated
the winner, and similarly we ranked the different heuristics in the configu-
ration results section. Figure 3 displays the average ranking scores for our
and Müller’s approaches for each timetabling track of ITC 2007. The figure
shows that our approach outperformed Müller’s on the Examination track
and Curriculum-based track by a significant margin producing average rank-
ing scores of 6.06 and 9.77 versus 14.94 and 11.23, respectively. This figure also
displays that Müller’s original solver performs marginally better than with the
sequence-based hyper-heuristic implemented with an average ranking score of
10.31 against 10.88. However, we noticed that the proposed implementation
had difficulties with data instances that often resulted with a dtf (distance
to feasibility) score. If we exclude such Post Enrolment track instances, in-
cluding 2, 9, 10, the overall average ranking of our approach becomes 10.16
against Müller’s approach 11.07, hence we can observe that the sequence-based
hyper-heuristic performed better on the remaining 13 instances.

6 Conclusions

There has been a growing body of work on multi-stage selections hyper-
heuristics for both single [18] and multi-objective [21] optimisation. This paper
presents a tuned multi-stage sequence-based hyper-heuristic approach embed-
ded into the CPSolver framework in an attempt to improve on the solutions
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produced by Müller in the ITC 2007 competition. The proposed method is
capable of improving an initially created solution. It does this in a more so-
phisticated manner than the original framework by attempting to adaptively
identify and isolate sequences of low-level heuristics that perform well on a
given instance. We carried out extensive testing to accurately determine the
best configuration setup for our approach to decide the best stage option
(acceptance ordering), heuristic selection method and reward scheme. The fol-
lowing stage options are considered: HC-GD-SA, HC-SA-GD, GD-SA, SA-GD,
GD and SA. We observed that Great Deluge operating by itself ranked best
for all three tracks. However, when testing the heuristic selection method and
reward mechanism we found that the performance of the acceptance strategy is
not independent of other factors. After configuration tests, we concluded that
the best configurations for the Examination, post enrolment, and Curriculum-
based tracks were Great Deluge with tournament selection and delta learning,
Great Deluge and Simulated Annealing with tournament selection and delta
learning, and Great Deluge with Roulette Wheel selection and non-linear learn-
ing, respectively.

As illustrated, the proposed approach was effective at improving on Müller’s
ITC 2007 solution objective values. All the Examination instances were im-
proved upon, with instance 4 improving as much as 12.5%. We improved on
the solution values for 9 data instances in the Post Enrolment track. Finally,
for the curriculum-based track we made improvements on 15 of the data in-
stances, as much as 50% (instance 7), and found the same solution value on 3
other data instances. We also compared the proposed technique against state-
of-the-art approaches for all three tracks. We found improving solution values
on 5 Examination data instances, joint lowest solution values on 2 post en-
rolment data instances and finally, 6 improving and 4 joint lowest solution
values on the curriculum-based track. It is stressed that the results obtained
by methods after the end of the competition are bespoke solvers designed to
only solve problem instances for the given track. Some of the solvers were
also allowed to run for more than 10 runs, the allowed number within the
competition, leading to an unfair comparison. The educational timetabling is
still of interest to many academics as well as practitioners. A trivial future
work would be applying the proposed approach to unseen instances, perhaps
to those instances provided during the new competition on university course
timetabling, ITC 2019 [24].
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Abstract Developing robust university course timetables is an important
practical concern. Due to a variety of possible disruptions, i.e. changes in the
input data affecting the constraints, quickly calculating an estimate of robust-
ness to be used within a meta-heuristic, such as Simulated Annealing, would
be very useful. In this research, we attempt to develop a set of slack-based
estimators of a solution’s robustness. To this end, we define 11 different slack
measures (period, room and course-based) and use three summary statistics for
each measure as an estimator of robustness. Preliminary experimental analysis
of the performance of these estimators is done on a sample of 192 solutions for
four International Timetabling Competition 2007 instances selected based on
their diverse characteristics. The results suggest that a slack-based estimator
can be used to identify a Pareto “band” rather than an approximate frontier
that strikes a balance between probability of a solution on the true frontier
being in the band and one not on the true frontier not being in the band.
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Fatih Sultan Mehmet Univ., Dept. of Computer Science, Beyoğlu, 34445 İstanbul, Turkey.
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1 Introduction

In a typical curriculum-based timetabling process at a university, an initial
timetable, Σ0, is prepared based on a set of constraints, which is then an-
nounced to the university staff, giving them some time to submit requirement
changes, due to new constraints or data corrections. The timetable is then re-
optimized taking these new constraints into account, while ensuring that the
changes to Σ0 is kept to a minimum. This second timetable is announced to
the entire university and the students enroll in courses based on this timetable.
Several types of disruptions that may affect this process are discussed in the
literature (McCollum (2007), Müller et al (2005), Kingston (2013), Phillips
et al (2017), Lindahl et al (2019)). As discussed in Phillips et al (2017) many
different types of changes in data (disruptions) are possible before enrollment.
Some new courses could be added, some others could be removed or canceled
(see e.g. Yasari et al (2019)), some new faculty may arrive and some others
may leave. Some disruptions could simply change feasibility of certain periods
for some lectures. Some disruptions may affect either the availability or the
capacity sufficiency of rooms for some lectures.

Problems in which constraints change over time are known as dynamic op-
timization problems, which fall into the category of optimization in uncertain
environments. Meta-heuristics are quite often used for solving these problems
(e.g. see Jin and Branke (2005) for a survey of evolutionary algorithms). Re-
cently, there has been increasing interest in modeling and solving dynamic
combinatorial optimization problems. One such problem closely related to
timetabling is the graph coloring problem. Hardy et al (2018) develop heuris-
tics for the dynamic graph coloring problem where edges are added/removed
over time, randomly. They look into how information about the likelihood of
future edge changes can be used to produce more robust colorings.

We say a timetable is robust if, when disrupted, its feasibility can be re-
stored without significantly lowering its quality in terms of the objective func-
tion while keeping it relatively stable. We formulate the problem of identifying
a robust timetable as a bi-criteria optimization problem where one objective
is the quality of the solution measured as a function of the violated soft con-
straints (i.e., the penalty function), denoted by P , and the second one is a
function that measures the robustness of the timetable, denoted by R.

We assume multiple number and types of disruptions can affect a given
timetable. This makes calculating the robustness of a given solution quite time-
consuming, since it requires optimally repairing that solution for a reasonably
large sample of disruption scenarios. Thus, the main challenge of designing a
meta-heuristic, such as Simulated Annealing (SA) to solve such a problem is
designing an approximate measure of the robustness of a solution that can be
calculated very quickly. In the work reported here, we develop and test some
measures based on the degree and distribution of slack in a given timetable.
The specific timetabling problem we address is the curriculum-based university
course timetabling problem of ITC-2007 (see McCollum et al (2010)).
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1.1 Disruption scenarios

Here we use the disruption scenarios that have been first developed and used
by Akkan et al (2019). By assuming disruptions that affect two types of limited
resources (time and rooms) we believe we introduce disruptions of sufficient
variety and complexity. Specifically, we assume the following four types of
disruptions may occur:

1. IP : The period to which a lecture of an instructor was assigned is no
longer feasible for that instructor. This disruption is specified by a tuple
〈i, p〉 where i is an instructor, and p is the period to which one lecture of
instructor i is assigned in Σ0. If a disruption 〈i, p〉 is generated, unavailabil-
ity constraints for all courses of instructor i at period p are added, unless
such a constraint already exists.

2. CP : This disruption is specified by a tuple 〈c,P1,P2〉 for course c. Given
the set of periods available for course c, denoted by PCc , P1 ⊆ PCc is a set of
consecutive periods on the same day that become infeasible (unavailable)
for course c and at least one of these periods is used by course c in Σ0.
P2 ⊆ P\PCc is a set of consecutive periods that become available for course
c such that |P2| ≤ |P1|.

3. CS: The number of students for a course is increased beyond the capacity
of the room assigned to at least one lecture of that course. Note that this
does not cause infeasibility, as room capacity is a soft constraint in ITC-
2007, but increases the penalty of the initial timetable. This disruption is
specified by a tuple 〈c, s〉, where s is the new number of students for course
c. Even if some lectures of the course are currently assigned to rooms with
enough capacity, all the lectures of this course are included in the set of
room-disrupted lectures.

4. RP : Availability of one room is lost for one or two consecutive periods on
the same day. This disruption is specified by 〈r, p, d〉, where p is the first
period that room r becomes unavailable, and d is the number of periods
that become unavailable.

A set of disruptions of these types is referred to as a disruption scenario.
All disruptions in a given scenario are aggregated in two sets of disrupted
lectures. The set of lectures e, whose assigned periods in Σ0 become infeasible
due to IP and CP disruptions is denoted by EP (period-disrupted lectures).
The set of lectures e, whose assigned rooms in Σ0 become either infeasible
due to RP disruptions or have insufficient capacity due to CS disruptions is
denoted by ER (room-disrupted lectures). Then, the set of disrupted lectures,
ED, equals EP ∪ ER, with size δ.

1.2 The robustness measure

The robustness objective is expressed as minimizing E(R(S, YS)), the expected
value of a disruption measure R(S, YS), where S is a given solution and YS is
the random variable representing the disruptions.
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Let, F(σi) be the set of all solutions that are feasible with respect to
a disruption scenario σi and D(S0, S1) be the Hamming distance between
assigned period arrays for all lectures Te(S0) and Te(S1) of these two solutions.
D(S0, S1) is equal to the sum, over all courses, of the number of lectures that
are assigned to different periods in these two solutions. Then, we define the
following neighborhood set for a given solution S0 and disruption scenario σi
with δpi period and δri room-disrupted lectures:

N (S0, σi) = {S : D(S0, S) ≤ f(δpi , δ
r
i );S ∈ F(σi)} (1)

Thus, if solution S0 is disrupted by scenario σi, then switching to any solution
in N (S0, σi) would restore feasibility by rescheduling at most f(δpi , δ

r
i ) lectures

to a different period, where f : (N,N) → N. Then, we define the robustness
measure for a given solution S0 and a disruption scenario σi as,

R(S0, σi) = min
S∈N (S0,σi)

(
Pave · 1D(S,S0)>δ

p
i

+ (P (S)− P (S0))+
)

(2)

where x+ := max(0, x) and Pave is the average per lecture penalty for a ran-
domly generated sample of solutions (see Gülcü and Akkan (2020)). Pave is an
additional penalty term added so that solutions that only reschedule period-
disrupted lectures to different periods are favored. Thus, in addition to qual-
ity robustness measured by (P (S)− P (S0))

+
, by adding a fixed penalty cost

for rescheduling more lectures than the period-disrupted lectures, R(S0, σi)
incorporates a measure of solution stability. Solution stability is further en-
sured by adding the constraint D(S0, S) ≤ f(δpi , δ

r
i ) in defining N (S0, σi). If

N (S0, σi) = ∅, then R(S0, σi) is set to a large value, denoted by B.
For solution S, an estimate of E(R(S, YS)) is calculated as a sample av-

erage 1
|Y|
∑
y∈Y R(S, y) for a sampled set of disruption scenarios Y, since a

closed-form calculation of E(R(S, YS)) is not possible. Given the robustness
measure, R, and a set of randomly generated sample of disruption scenarios,
σ = {σ1, σ2, . . . , σN}, E(R) is estimated by R(S, σ) = (1/N)

∑N
i=1R(S, σi).

R(S, σ) is taken as the true robustness measure, using a reasonably large N .
This approach bears some resemblance to the Sample Average Approximation
(SAA) method of Kleywegt et al (2002). The algorithm that is used to repair
solution S subject to a given disruption scenario is the Simulated Anneal-
ing algorithm discussed in detail in Akkan et al (2019), in which f(δpi , δ

r
i ) =

2× δpi + 0.25× δri , and B = 1200.

2 Slack-based Estimators

The tested estimators are summary statistics of some measures of slack in a
given timetable. These measures can be classified into three groups. The first
group provides measures of slack for each period. Let, X(p, r) equals 1 if room
r is used at period p by some lecture, 0 otherwise; and Rm(p) equals the
number of rooms used at period p, while the total number of rooms is Rm.
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Then, assuming the rooms are indexed in increasing capacity, define RSA[p],
room-based slack at period p, as

RSA[p] =

{
1

Rm(p)

∑
r

∑
q>r 1([X(p,r)=1,X(p,q)=0), if Rm(p) > 0

(Rm− 1), if Rm(p) = 0
(3)

The summation term in Eqn. 3, ρ(p, r) =
∑
q>r 1([X(p,r)=1,X(p,q)=0) gives

for every room used at a period, the number of available larger capacity rooms
in the same period.

It is quite reasonable to have decreasing marginal benefit in increasing
ρ(p, r), so an alternative slack measure could make use of an exponential utility

function as RSU[p] = 1
Rm(p)

∑
r

∑ρ(p,r)
j>=1 e

−j for a given period p.

Alternatively, we can assume there is utility in having at least one larger
capacity room for a lecture scheduled at a given period, say at (p, r). In that
case, we would have ρ(p, r) > 0. Then, another slack measure can be defined
as RSB[p] = 1

Rm(p)

∑
r 1ρ(p,r)>0 for a given period p.

The second group of estimators make use of slack measured for each room.
For room r, letting, π(r) =

∑
t 1X[t,r]=0 denote the the number of available

periods in the same room, we define PSU[r] =
∑π(r)
j=1 e

−j as a slack measure
for a given room r.

The next measure is a more finely grained version of PSU[r], where the
periods are sub-divided into daily sets. Let the day of a given period p be
denoted by D(p). Then, ξ(d, r) =

∑
p:D(p)=d 1X[p,r]=0 represents the number of

available time-slots on day d at room r, and we define DSU[d, r] =
∑ξ(d,r)
j=1 e−j

as a slack measure for a given room r on day d.
The third group of estimators measure course-specific availability of peri-

ods. We first let,
Y(p) = the set of courses scheduled at period p.
FR(p) = the set of free rooms in period p
FR(p) = the number of free rooms at period p.
K(r) = the capacity of room r
Kmax(p) = maxr∈FR(p){K(r)}
S(c) = the number of students planned for course c
F(c) = the set of feasible periods for course c.
C(c) = the set of conflicting courses for course c

Note that courses in the same curriculum or taught by the same teacher
are referred to as conflicting courses. We then define the following sets,

AP(c) = {p : p ∈ F(c), FR(p) > 0}
AP+(c) = {p : p ∈ AP(c),Kmax(p) > S(c)}
CP(c) = {p : p ∈ AP(c),Y(p) ∩ {C(c) ∪ c} = ∅}
CP+(c) = {p : p ∈ AP+(c),Y(p) ∩ {C(c) ∪ c} = ∅}

Thus, AP(c) gives the set of periods available for course c, CP(c) gives the
set of conflict free periods available for course c and CP+(c) gives the set of
conflict free periods available for course c, having at least one free room with
sufficient capacity.
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Given these sets, we can define the array C[c] that contains the number
of conflict-free available periods for each course, as C[c] = |CP(c))|. Similarly,
the array of the number of conflict-free available periods with free rooms of
sufficient capacity, for each course c, is defined as R[c] = |CP+(c)|.

Rather than simply counting the number of available periods, as a basis
of the next slack measure, we calculate the utility of the conflict-free available
periods using an exponential utility function, that gives decreasing marginal
utility with increasing number of conflict-free available periods. The array of

these utilities is defined as UC[c] =
∑|CP(c)|
j=1 e−j , for each course c. Similarly,

we define a utility function that is based on conflict-free available periods with

available rooms of sufficient capacity as UR[c] =
∑|CP+(c)|
j=1 e−j , for each course

c. Furthermore, one can argue that the value of C[c] depends on the number
of lectures of course c, L(c), so we defined two additional arrays CED[c] and
CER[c], as CED[c] = C[c]− L(c), and CER[c] = C[c]/L(c).

Given these eleven slack measuring arrays (3 defined for each period, 2 for
each room, and 6 for each course), we calculate the average, standard deviation
and the coefficient of variation (standard deviation over average) of each array
as estimators of the robustness of the given timetable. These three summary
statistics for a given slack measure S are denoted as S, SDS , CVS , respectively.

3 Computational results

For the computational experiments we selected four ITC-2007 instances, namely
ITC1, ITC2, ITC5 and ITC12. They are among the most constrained (thus
potentially difficult) instances in terms of conflict intensity, teacher availabil-
ity, and room occupancy (Bonutti et al (2012)). Then, for each instance, a
set of 48 solutions were selected to carry out correlation analysis between the
slack metrics and the robustness measure, R. The purpose of the selection
procedure was to obtain a diverse set of solutions, from among the set of solu-
tions accepted through a Simulated Annealing algorithm designed to minimize
the penalty. A brief discussion of the selection procedure is provided below,
interested readers could find the details in Akkan et al (2020).

3.1 Solutions selected for analysis

The solutions that were found in the SA search process were used to form
a network of solutions, where each solution is represented by a node. Selec-
tion of solutions for the computational experiments was based on two of their
characteristics: the penalty value and the degree of the node. For each ITC
instance four networks were generated, and 12 solutions were selected from
each network. For the instance ITCi, the network Nnc,s

i was generated by
collecting nc thousand solutions accepted by the SA algorithm (we used 50
and 100 thousand). Starting with the solution accepted in the last iteration
of SA, going backwards and skipping every sth accepted solution, a total of
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Table 1 Penalty and degree intervals used to select the sample of solutions from N50,0
2

P : 75 76 77 78 79 80

[13, 32] [13, 32] [13, 32] [33, 52] [33, 52] [53, 72]
[173, 192] [133, 152] [113, 132] [93, 112] [93, 112] [73, 92]

nc thousand solutions are collected into the network (we used s equals 0 and
1). Letting G(N,E) denote a solution network, we let the neighbors of node v
be the set of nodes w such that D(v, w) ≤ ρ, where D(v, w) is the number of
lectures with different assigned periods in v and w, and ρ is an integer param-
eter. ρ could be seen as the maximum number of events that would need to
be rescheduled to a different period in order to respond effectively to a disrup-
tion scenario. We calculated ρ for each ITC instance as 2 ×Np + 0.25 ×Nr,
where Np and Nr are the maximum number of period-based and room-based
disruptions possible for that instance (for ITC2 Np = 8 and Nr = 16 events).
Thus, the degree of a solution is likely to be correlated with the robustness of
the solution, as it indicates the size of the solution space that could be used
to repair that solution.

Frequency tables were formed of all solutions in each network based on
intervals of penalty and degree, and then a solution was selected from the
solutions that fall into selected intervals. The selections were made from among
the solutions with penalties that are close to the minimum penalty value,
Pmin, found by the SA algorithm. For each network, six penalty-intervals were
selected. For example, for ITC2 Pmin = 75 and all solutions had one of the
six penalty values listed in Table 1, so intervals were only defined for the
degrees. Given the penalty interval (or the penalty) we randomly sampled one
solution from the smallest degree interval, and the second solution from the
largest degree interval. In a few cases when a degree interval contained only
already selected solutions, we moved to the adjacent degree interval for the
same penalty interval.

3.2 Correlation analysis

Pearson correlations coefficients, ρmi , were calculated between each slack met-
ric, say m, and the robustness measure R using the set of 48 solutions for each
instance ITCi. Then the absolute values of these correlations were ranked
among those for each instance, in decreasing order so that the largest one is
ranked first. Letting %mi denote the rank of |ρmi |, the average rank of metric
m was calculated as, %m = 1/4

∑
i∈{1,2,5,12} %

m
i . For the nine best ranking

metrics, their correlation coefficients and average ranks, %m, are reported in
Table 2. For each of these correlation coefficients, a test of hypothesis was done
where the null hypothesis states the correlation is equal to zero.

Based on the correlations presented in Table 2 we chose three of the metrics
for further analysis, namely, CVCER, UC, and CVC , which are the best ones
for their corresponding arrays. CVCER has the best overall average rank with
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Table 2 Pearson correlation coefficients with R

CVCER UC CER CVUC SDUC CVC RSU DSU CVRSA

Ave. Rank 8.5 9.5 10.25 10.75 11.75 12.25 13.25 14 14.25

ITC1 −0.226 −0.227 −0.184 0.211 0.205 0.142 0.106 0.285[ −0.120

ITC2 0.292[ −0.384] −0.060 0.409] 0.411] 0.303[ 0.429] 0.088 −0.426]

ITC5 0.296[ −0.169 −0.321[ 0.160 0.150 0.256∗ −0.219 0.199 0.152

ITC12 0.290[ −0.319[ −0.375] 0.271∗ 0.255∗ 0.277∗ 0.176 0.154 −0.205

] : p < .01, [ : p < .05, ∗ : p < .10

statistically significant correlations for three instances. Correlation between
UC and R is negative for all four instances, although for two of them we
have sufficiently low p-values to reject the null hypothesis of 0 correlation.
CVC , on the other hand, is consistently positively correlated with R and for
three of the instances, the correlations associated with CVC are different from
zero at a statistically significant level. Recall that C[c] array contains the
number of conflict-free available periods for each course. Thus, the positive
correlation associated with CVC suggests that the more evenly such periods
are distributed across courses and the larger the average number of conflict-
free available periods is, the more robust the solution would be (with smaller
R). CVUC , the utility-adjusted version of CVC , yields a similar performance
to CVC . The negative correlations associated with UC is consistent with this
interpretation.

For all instances, the scatter plots of the nine slack metrics with R were
plotted. We observed for ITC5 that in the plot for RSU there is an outlier
solution that is increasing the correlation, however the hypothesis testing re-
sulted in not rejecting a zero correlation (see Figure 1). For the other scatter
plots, we did not see such a case of a single outlier.

3.3 Accuracy in identifying the Pareto frontier

The planned use of a slack metric is as an estimate of robustness within a
multi-objective Simulated Annealing algorithm (MOSA) with two objectives:
the penalty of the solution and its robustness. A MOSA algorithm maintains an
archive of solutions which comprises the best Pareto frontier at each iteration.
A new solution enters the frontier if there is no solution in the current frontier
which dominates it. The number of solutions that dominate a given solution s is
referred to as the domination count of solution s and the rank of that solution,
r(s), is equal to its domination count plus 1. So, a frontier is comprised of
solutions of rank 1. Since the MOSA algorithm will be designed to use the
slack metric M rather than the robustness measure R, and M is a estimator,
a solution with rank 2 defined by (P,M) might easily be on the Pareto frontier
defined by (P,R). Thus, it would be reasonable to keep in the archive, solutions
s with r(s) ≤ K, where K is an integer cutoff value, rather than r(s) = 1.
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Fig. 1 ITC5: scatter plots of R versus selected slack metrics

In this case, the final archive at the end of the MOSA algorithm’s run, A,
would be a short-list of solutions that are highly likely to contain the solutions
forming the Pareto frontier based on (P,R), F . We then would calculate the

robustness R(s) for all s ∈ A and obtain the approximate Pareto frontier F̃ ,
based on (P,R).
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Given the approach discussed above, for a metric M to performs well, we
would want a large P (s ∈ A|s ∈ F), and similarly a large P (s 6∈ A|s 6∈
F). To estimate these probabilities, we have done the following experimental
analysis. For all 48 solutions of each ITC instance i we calculated their R values
and determined the corresponding Pareto frontier Fi. Then for each slack
metric M , we calculated the rank r(s) of each solution based on (P,M) and
determined the solutions that fall into the archive A(K)i defined by the cutoff
value K. Based on the combined sample of 192 solutions, Si for i = 1, 2, 5, 12,
the estimates of P (s ∈ A|s ∈ F) and P (s 6∈ A|s 6∈ F), denoted by f+(K) and
f−(K), respectively, are defined as:

f+(K) =

∑
i | {s : s ∈ A(K)i , s ∈ Fi} |∑

i |Fi|
(4)

f−(K) =

∑
i | {s : s ∈ Si \ A(K)i , s ∈ Si \ Fi} |∑

i |Si \ Fi|
(5)

Table 3 Accuracy in identifying the solutions on the Pareto frontier

UC CVCER CVC

K f+(K) f−(K) f+(K) f−(K) f+(K) f−(K)

1 0 0.939 0 0.939 0.091 0.917
2 0.182 0.884 0.273 0.884 0.273 0.884
3 0.455 0.840 0.364 0.823 0.364 0.818
4 0.545 0.796 0.455 0.762 0.636 0.768
5 0.636 0.746 0.636 0.729 0.727 0.740
6 0.636 0.713 0.636 0.685 0.727 0.685
7 0.636 0.669 0.727 0.641 0.818 0.646
8 0.727 0.608 0.727 0.613 0.818 0.597

Table 3 presents the above fractions for the three slack metrics selected
based on the correlation analysis in Section 3 for the cutoff values K = 1, . . . , 8.
For K ≥ 4, we can see that f+(K) is consistently larger for CVC than for the
two other metrics. On the other hand, f−(K) is consistently larger for UC
than the other two. The chart in Figure 2 suggests that K = 5 constitutes a
good trade-off between f+(K) and f−(K) for CVC . At K = 5, CVC gives a
better performance than CVCER in terms of both f+(K) and f−(K). On the
other hand, comparing CVC and UC we observe that their f−(K) values are
almost identical but CVC has a better f+(K).

4 Concluding remarks

In this work an attempt has been made to develop approximate measures of
robustness in the form of slack-based estimators that could be used within
a Simulated Annealing algorithm, which would identify the Pareto frontier
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Fig. 2 CVC accuracy: the tradeoff between f+(K) and f−(K)

defined by the penalty of a timetable and a measure of its robustness. Find-
ing such fast-to-compute estimators is needed because the calculation of the
robustness measure requires too much computational effort when there are
multiple disruptions of different types.

The approximate nature of the estimators suggest that they can be used
to identify a Pareto “band”, comprised of solutions with rank less than or
equal to a cutoff value, as opposed to the frontier comprised of solutions with
rank equals 1. The performance quality of a band is judged by how accurately
it distinguishes solutions that are on the true Pareto frontier (defined by the
robustness measure) from those that are not. To this end, for each cutoff value
and estimator, we calculated estimates of the probability of a solution on the
true frontier being in the band and one not on the true frontier not being
in the band. This is done on a sample of 192 solutions (48 solutions for each
of four ITC 2007 instances). The results suggest that CVC , the coefficient of
variation of the number of conflict-free available periods for each course, is the
best one among the 33 estimators tested.

The experimental analysis presented here should be seen as a preliminary
work, as this is currently a work in progress. We are implementing a MOSA
(Multi-Objective Simulated Annealing) algorithm that uses a given estima-
tor and maintains the Pareto “band” as opposed to the Pareto frontier in
its archive of solutions. Potential extensions of this work could include find-
ing other slack-based estimators, and also investigating different robustness
measures for which slack-based estimators can provide a better performance.
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Akkan C, Gülcü A, Kuş Z (2019) Minimum penalty perturbation heuristics for
curriculum-based timetables subject to multiple disruptions, unpublished

157

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



Can Akkan et al.
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Timetabling Problem

Panayiotis Alefragis · Christos Gogos ·
Christos Valouxis · Efthymios Housos

Received: date / Accepted: date

Abstract The paper describes a framework that was developed to solve the
Uncapacitated Examination Timetabling Problem. It also presents a way of
reducing problem sizes by removing students and examinations that ultimately
have no impact. Moreover, it presents some loose lower bounds that are com-
puted for reference problems. The framework allows the collaboration of multi-
ple metaheuristic algorithms. A common problem and solution representation
is created. Multiple evaluators are available and a mechanism to select variable
neighborhoods is implemented. A number of simple and complex neighbor-
hoods is created. The application of the framework creates competitive results
compared to the best ones available in the literature for the Toronto-b dataset.

Keywords uncapacitated examination timetabling · metaheuristics ·
framework

1 Introduction

The examination timetabling problem in general involves assigning examina-
tions to a limited number of periods and rooms while respecting a set of hard
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constraints and at the same time trying to minimize the violation of soft con-
straints. The Uncapacitated Examination Timetabling Problem (UETP) does
not consider room capacity requirements. The only hard constraint is that it
is not allowed for a student to sit on two examinations at the same period. On
the other hand, the only soft constraint is that of spreading examinations as
evenly as possible from the student’s perspective. A formal description of the
problem as an Integer Programming problem follows: In this problem setting,
C is the set of courses, P is the set of periods and S is the set of students.
Each course c has a number of enrollments which is captured at Ec. In sync,
each student s has a set of courses Cs that he is enrolled to. The set CNF
contains triplets of the form c1, c2, co which represent the situation in which
course c1 and course c2 have co in common students.

In order to define for each course the period that it will be scheduled
the decision variables mcp are used for each c ∈ C and p ∈ 1..P which
are binary variables assuming value 1 if the course c is scheduled to period
p or 0 otherwise. Moreover, the binary variables y1t,p are defined for each
t ∈ CNF and p ∈ 1..|P − 1| assuming value 1 when courses t.c1 and t.c2 are
scheduled in consecutive periods and 0 otherwise. Likewise, binary variables
y2t,p, y3t,p, y4t,p, y5t,p are defined and assume value 1 when courses t.c1 and
t.c2 are scheduled to periods with distance between 2 and 5 periods respec-
tively.

The objective function is presented in Equation 1

minimize
∑

t∈CNF

t.co
(
16

∑
p∈1...|P−1|

y1t,p

+8
∑

p∈1...|P−2|
y2t,p

+4
∑

p∈1...|P−3|
y3t,p

+2
∑

p∈1...|P−4|
y4t,p

+
∑

p∈1...|P−5|
y5t,p

)
(1)

The first constraint states that each course should be scheduled at exactly
one period and is captured in equation 2.∑

p∈P
mc,p = 1 ∀c ∈ C (2)

The second constraint shown in equation 3 prohibits every possible pair of
courses having common students to be scheduled at the same period.

mt.c1,p + mt.c2,p ≤ 1 ∀p ∈ P ,∀t ∈ CNF (3)

The third set of constraints equations 4 to 8 defines variables y1t to y5t.

y1t,p ≥ mt.c1,p + mt.c2,p+1 − 1
y1t.p ≥ mt.c2,p + mt.c1,p+1 − 1

}
∀t ∈ CNF, ∀p ∈ 1 . . . |P | − 1 (4)
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y2t,p ≥ mt.c1,p + mt.c2,p+2 − 1
y2t,p ≥ mt.c2,p + mt.c1,p+2 − 1

}
∀t ∈ CNF, ∀p ∈ 1 . . . |P | − 2 (5)

y3t,p ≥ mt.c1,p + mt.c2,p+3 − 1
y3t,p ≥ mt.c2,p + mt.c1,p+3 − 1

}
∀t ∈ CNF, ∀p ∈ 1 . . . |P | − 3 (6)

y4t,p ≥ mt.c1,p + mt.c2,p+4 − 1
y4t,p ≥ mt.c2,p + mt.c1,p+4 − 1

}
∀t ∈ CNF, ∀p ∈ 1 . . . |P | − 4 (7)

y5t,p ≥ mt.c1,p + mt.c2,p+5 − 1
y5t,p ≥ mt.c2,p + mt.c1,p+5 − 1

}
∀t ∈ CNF, ∀p ∈ 1 . . . |P | − 5 (8)

When courses c1 and c2 have distance 1 either mt.c1,p and mt.c2,p+1 or
mt.c2,p and mt.c2,p+1 assume value 1. If this is the case variable y1t will be 1.
If at least one of mt.c1,p or mt.c2,p+1 are 0 the value of y1t could be 0 or 1 but
since it is included in the objective which is minimized it will take the value
0.

This paper describes a framework that was developed to solve the UETP.
The most studied dataset was introduced by Carter [14]. Characteristics of the
used problem instances are presented in Table 1. The specific dataset is heavily
studied, but it is still possible to generate improved solutions compared to the
ones published in literature. The specific dataset has the property that while it
has very low learning curve and relative simple structure it is still challenging.

Table 1 Dataset Problem characteristics (Toronto-b [22])

Problem Exams Students Admissions Density Slots

CAR91 682 16925 56877 0.13 35
CAR92 543 18419 55522 0.14 32
EAR83 190 1125 8109 0.27 24
HEC92 81 2823 10632 0.42 18
KFU93 461 5349 25113 0.06 20
LSE91 381 2726 10918 0.06 18
PUR93 2419 30029 120681 0.03 42
RYE92 486 11483 45051 0.07 23
STA83 139 611 5751 0.14 13
TRE92 261 4360 14901 0.18 23
UTA92 622 21266 58979 0.13 35
UTE92 184 2749 11793 0.08 10
YOR83 181 941 6034 0.29 21

The paper is organized as follows. Section 2 presents related work, sec-
tion 3 presents some analysis on the dataset instances, section 4 presents a
high level framework design and describes the metaheuristic algorithms and
the neighborhoods supported by the framework, section 5 presents generated
results and finally section 6 presents conclusions and future work.
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2 Related Work

Several approaches have been proposed for solving the UETP. The datasets
introduced by [14], collectively known as Toronto datasets, have been typically
used as a testbed for demonstrating the effectiveness of new approaches. So,
a great number of published results exist over those datasets, showing that
approximation methods manage to produce better results, when compared to
exact methods. This might occur due to the large size of the problem instances
and the symmetries among several different schedules that can be produced.
Both these factors prohibit Integer Programming solvers, Constraint Program-
ming solvers and SAT solvers to solve the full problem behind each problem
instance.

A non-exhaustive list of approaches that have given good results follows.
Algorithms based on local search were proposed in [13]. Several hybridizations
of metaheuristics with sequential heuristics were used in [24]. The flex-deluge
algorithm and the late acceptance strategy for solving UETP where proposed
in [8] and [9] respectively. A hybrid variable neighborhood search was used
in [12]. In [15] the problem was approached using hyperheuristics. In [4] the
problem was solved using a hybrid bee colony optimization method. Another,
recent hybrid approach that combines a cellular memetic algorithm with the
threshold acceptance metaheuristic is described in [20].

It should be noted that the survey paper in [22] presents many details about
the examination timetabling problem in general and in particular about the
UETP. A review paper focusing on UETP recently appeared in [2].

3 Some thoughts on the problem and a few loose lower bounds

The simplicity of describing the UETP problem is at odds with the hard-
ness of optimally solving it. This situation strikes resemblance with the iconic
combinatorial optimization problem, Traveling Salesman Problem (TSP) [7].
For TSP, large problem instances have proven optimal solutions, while several
solvers exist capable of obtaining optimal solutions for TSP instances of mod-
erate to large sizes. In particular, the freely available Concorde TSP solver [5]
has the record of obtaining optimal solutions for all TSPLIB [23] instances.
It is impressive that Concorde solver can optimally solve the largest TSPLIB
instance, counting 85,900 cities, while back in 1962, a problem with only 33
cities was considered very difficult to be solved and a competition was hosted
by Procter & Gamble in order to solve it. Moreover, significant theoretical
work has been gradually done for TSP in order to provide solutions within a
guaranteed distance from the optimal ones or in order to find lower bounds
(e.g. Christofides algorithm, 1-tree Lagrangean relaxation). So, new solutions
can be quantified according to how close they are to the theoretically optimal
ones. For example, the world tour TSP problem with 1,904,711 locations has
been solved with total length of only 0.0474% greater than the length of the
theoretically optimal tour. Unfortunately, UETP has not achieved the level of
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maturity that TSP has reached. There are several approaches that give good
results, but this is mostly justified by comparing them with results obtained
for the same problem instances by other researchers. The popularity of TSP,
the longest time that TSP has been at the center of interest for the scientific
community, its adaptation to numerous practical combinatorial optimization
problems (e.g. transportation problems, printed circuits, logistics and others)
might be among the reasons why research on TSP is much more mature than
in UETP.

By simple analyzing the data of the Toronto datasets a few remarks can be
made. Firstly, if there are students that participate in only one examination,
then their presence is irrelevant to the solution of the problem. We call these
students “noise students”, since they have no contribution to the cost of the
final schedule. Secondly, if there are courses that have only “noise students”
then these courses can also be safely removed from the problem, since they
can be scheduled at any period without affecting the cost of the schedule. We
call these courses “noise courses”. It turns out “noise” students and courses
exist for the Toronto datasets. Relevant results are displayed in Table 2 and
suggest that new equivalent versions of the datasets might be constructed by
omitting the “noise” students and courses. The rightmost column of the Table
displays the actual identification numbers of the “noise” courses that are used
at the corresponding datasets.

Table 2 Carter datasets “Noise”

Problem #“Noise” Students #“Noise” Courses Set of “Noise” Courses

CAR91 3409 4 {0033, 0349, 0440, 0657}
CAR92 3969 1 {0519}
EAR83 1 0 Ø
HEC92 321 0 Ø
KFU93 276 17 {0006, 0016, 0022, 0050, 0095,

0122, 0178, 0204, 0205, 0216,
0285, 0329, 0330, 0355, 0369,
0381, 0443}

LSE91 99 2 {0168, 0256}
PUR93 2627 6 {0153, 0552, 0976, 0983, 1454,

1520}
RYE92 2025 1 {0304}
STA83 0 0 Ø
TRE92 667 1 {0186}
UTA92 6180 0 Ø
UTE92 78 0 Ø
YOR83 1 0 Ø
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3.1 Loose lower bounds

Bellow, an idea for calculating some loose lower bounds for the UECP prob-
lem instances is described. Each student has a set of courses he is enrolled to.
These courses should be scheduled to different periods and each assignment
gives an associated cost based on the proximity among the exams. The possible
permutations of scheduling E exams over P periods are P !

(P−E)! . For each per-

mutation the associated cost is easy to be computed. Since the total number
of permutations might be prohibitively large in order to enumerate all permu-
tations and compute its cost, one can notice that the number of examinations
that can be scheduled with zero cost in P periods are L = bP−16 c+1. So, when
the number of examinations a student is enrolled into is no more than L then
the theoretical best cost contribution that can be achieved for this student is
zero. Else, a simple optimization problem can be solved that finds the mini-
mum cost of positioning the E exams of a single student in P periods. A lower
bound to the problem can be identified when the examinations of each student
are scheduled to the exams into the period permutation with the minimum
cost. Such an arrangement might not be possible since it does not consider the
fact that examinations are common between students and each examination
should be scheduled to the same period for all students. Nevertheless, it pro-
vides a lower bound for the problem instances. These bounds, alongside with
the maximum number of courses that a student is enrolled to are presented in
Table 3.

Table 3 Carter dataset lower bounds

Problem Periods Courses per Student (max) Lower Bound

CAR91 35 9 0.01
CAR92 32 7 0.01
EAR83 24 10 17.85
HEC92 18 7 3.49
KFU93 20 8 5.63
LSE91 18 8 2.76
PUR93 42 9 N/A
RYE92 23 10 3.79
STA83 13 11 105.92
TRE92 23 6 0.59
UTA92 35 7 N/A
UTE92 10 6 19.25
YOR83 21 14 18.50

For two of the problem instances, STA83 and UTE92 the lower bounds
are relatively close to the best values obtained in the literature. For two other
problem instances, PUR93 and UTA92 no lower bound can be found in this
way. Following the procedure that was described above the computed value
becomes zero. This occurs because there are enough timeslots that allow even
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for students that have enrolled to the maximum number of courses to have
their examinations spread with no mandatory penalty.

4 The multi metaheuristic VNS framework

4.1 The multi heuristic strategy

The proposed framework which is an extension of Variable Neighborhood
Search (VNS) [21] uses a number of basic metaheuristic algorithms that are
orchestrated using a promising solution that has already been found from
some other algorithm and each one tries to improve it and pass the result to
the next one. Each metaheuristic algorithm uses a number of neighborhoods,
called moves, to select the next candidate solution. Simple moves are randomly
selected, while complex moves are triggered when no progress is achieved using
just simple moves. Table presents the names of the used algorithms.

4.2 Supported metaheuristic algorithms

4.2.1 Simulated Annealing

Simulated Annealing (SA) was proposed by Kirkpatrick et al. [18]. It is a
stochastic metaheuristic algorithm, which accepts inferior quality candidate
solutions with probability P = e(I−C)/T , where C and I are the cost of the
incumbent and the candidate solutions respectively and T is a control pa-
rameter called “temperature”. The application of the algorithm to solve the
UETP is heavily studied. In our implementation, we have developed a number
of alternative cooling schemes and reheating mechanisms.

4.2.2 Late Acceptance Hill Climbing

The Late Acceptance Hill-Climbing (LAHC) [11] is a local search metaheuristic
algorithm, which may accept inferior candidate solutions if their cost is better
than the solution accepted k iterations before. The algorithm maintains a cyclic
buffer of the cost of the last k iterations. The performance of the algorithm is
mainly effected by the value of the k parameter. The algorithm implementation
in the framework adapts the value of k depending on the progress of the last
execution of the LAHC algorithm. At the beginning of the search strategy a
relative small value of k is used to promote the algorithm to mainly accept
improving solutions. When no significant progress is achieved, the value of k
is progressively increased.

4.2.3 Flex Deluge

The Flex Deluge (FD) [10] is a local search metaheuristic algorithm that is a
variant of the Great Deluge (GD) algorithm. The GD algorithm may accept
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inferior candidate solutions if their cost is better than an upper bound denoted
by B. The FD algorithm has an additional kf parameter that denotes the
degree of its flexibility. A kf value of 0 turns the algorithm to a Hill Climbing
algorithm while a value of 1 makes the algorithm identical to the Great Deluge
algorithm. The algorithm accepts a new candidate solution with cost Z if
Z < C + kf (B − C) where C is the cost of the current solution.

4.3 Supported neighborhoods

The proposed framework support multiple neighborhoods that the active meta-
heuristic algorithms select in each iteration to generate a candidate solu-
tion. We will call these neighborhoods “moves”. The implemented moves are
grouped in two groups. The first group contains simple moves that perform
small transformations to the incumbent solution. The second group contains
more elaborate changes to the incumbent solution and may perform a rela-
tively large local search before proposing a new candidate solution, making
them more computationally expensive. The moves are presented in Table 4.

Table 4 Search space exploration

Key Simple Moves Key Complex Moves

S1 BestKempeChain C1 PenaltyDecreaserMove
S2 RandomKempeChain C2 RuinAndRecreateMove
S3 MoveWorstExam C3 SaturationImproverMove
S4 ForceSingleExamAtBest C4 CyclicExchangeMove
S5 SingleExamAtBestSlot C5 TimeRelaxerMove
S6 ExchangeExams
S7 Move Single Exam

4.3.1 Random and Best Kempe Chain

The first available neighborhood structures uses the concept of Kempe Chains
(KCs), initially used to solve the “four color problem”. Given the two sets
of exams assigned to two periods, a number of chains consisting of exams
belonging to either one of the periods is constructed. When an exam of a
chain is moved from one period to the other then all other exams of the same
chain are also moved to maintain feasibility. Initially, both moves randomly
selects two slots and generates all possible KCs between these slots. Then the
Random KC move shuffles the generates KCs and sequentially evaluates the
difference in the cost, if the move was applied. If it finds a KC that produce
a better solution than the incumbent one, it stops the process and returns
the selected KC to be applied. If no improving KC is found, a random one is
returned. The Best KC move on the other hand always returns the KC that
generates the best reduction in the solution cost, among the generated KCs.
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4.3.2 Move Worst Exam

The second available neighborhood structure ranks each exam based on the
individual contribution to the overall cost. The top k exams with the worst
contributions are then put in a squeaky wheel random selection scheme and
one of them is selected. The move then tries to find the best legal slot to move
the exam.

4.3.3 (Forced) Single Exam at Best Slot

The third available neighborhood structures randomly select an exam and
then tries to find the best legal slot to move the exam. The forced version tries
all possible slots, even the illegal ones, and calculates the benefit of moving
the exam to the specific slot. Then, if the best slot is illegal as exams with
conflicting students are already assigned to this slot, it moves the exam to the
best slot and then tries to find a new feasible placement for all the conflicting
exams.

4.3.4 Move Single / Exchange Exams

The fourth simple available neighborhood structures randomly selects an exam
and moves it to the first feasible slot it finds. The exchange move randomly
selects a non conflicting exam from the selected slot and moves this exam to
the initial slot of the first exam.

4.3.5 Penalty Decreaser

The first of the complex moves either tries to optimize first very costly exams
or badly placed exams. For each exam it finds the available legal slots that can
be moved. It then calculates for all legal moves the benefit that each move will
have to the incumbent solution. Based on the calculated benefit it select f out
of all exam moves from the most beneficial to the least one. It then generates
up to k × f combinations out of the selected ones and generate application
sets of exam slot pairs that if applied will generate a legal assignment. Finally,
it evaluates the generated sets and select to apply the best one. For our ex-
periments, k had a value of 30 and f a value of 5. The move requires a lot
of computation time, but is usually able to generate a much better solution
compared to the incumbent one.

4.3.6 Ruin & Recreate

The second of the complex moves initially removes a set of exams, the ruin
phase. One of the two available methods is randomly used to select exams.
The first method selects a fixed percentage of the exams in the problem while
the second uses a knapsack inspired method and removes exams that their
individual contribution to the incumbent solution cost is used as the weight.
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In the second phase, the recreate one, the removed exams are placed in slots
sequentially, using a randomly selected method out of the three available .
The first method, randomly select one unscheduled exam and places it to the
best legal available slot, the second method to the first feasible slot it can find
while the last one randomly select one the previous methods for each individual
exam. The recreate phase placements may lead to an infeasible solution, as
no back tracking is performed when placing unscheduled exams to slots. The
move has a very strong effect, if successful, to help algorithms escape from
local minimum.

4.3.7 Saturation Improver

The third of the complex moves initially calculates for all exams the available
legal slots that each exam can be assigned and then sorts the exams from
the most constrained to the least ones. It then tries to find for the most con-
strained ones if reassigning some of the exams that that have common students
to other slots improves the number of the available slots that the currently se-
lected exam can be moved. It is important to note that the reassignments are
only allowed if no significant change in the cost of the incumbent solution is
performed. For our experiments, we allowed up to 1% total reduction in the
quality of the solution. The idea behind the move is to allow exams that due
to the placement of other conflicting exams are unable to move to provide new
possible slots, helping the algorithms escape from specific areas in the solu-
tion space. The move usually generate worse quality but different solutions
compared to the incumbent one.

4.3.8 Cyclic Exchange

The fourth of the complex moves randomly selects a slot. It then performs
the best Kempe Chain exchange with the next slot and this continues until
the last available slot. When we reach the last slot, the exchange is performed
between the last slot and the first slot. The exchange sequence is continued
with the second slot until the initially selected slot is reached. The idea behind
this move is that exams that are placed at the first or the last slots due to
the cost structure have a benefit as their individual contribution to cost is
calculated with only the exams that are on their right for the exams placed
on the first slots and on their left for the exams placed on the last slots. With
this move, we promote exams with high cost to move to the edges of the slot
periods.

4.3.9 Time Relaxer

The last of the complex moves is inspired by the penalty trader move in [13].
We allow up to d slots for an exam to be moved forward, even if this slot is not
available and we calculate the benefit in the cost that this move would have.
All exams that have moves that would be beneficial are added to a candidate
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list and the list is sorted in an ascending way. We then select the exam with the
highest benefit and remove all other exams that are in the candidate list and
have common students with the selected exam. The selected exam is added
to a new list with non conflicting exams. The process continues until no more
exams are available in the candidate list. As the non conflicting list contains
exams that are compatible and can be scheduled on the same slot, the best
slot for all these exams is selected. The idea behind the move is that it clusters
compatible exams that individually may not have a big benefit in the cost but
collectively may provide a better candidate solution.

5 Experimental results

Best results achieved using all the metaheuristic algorithms and all the avail-
able moves in the framework alongside some of the best results published for
the same dataset are presented in Table 5. The results from our framework
are in the column MAVN, while results from other heuristic method are from
a tabu search method implemented by Di Gaspero and Schaerf[16], a graph
coloring method proposed by Pillar and Allende[17], the sequential heuris-
tic construction methods developed by Caramia et al.[13], the Ahuja-Orlin
large neighbourhood search by Abdullah et al.[1], the Iterative Restart Vari-
able Neighbourhood Search by Ayob et al.[6] and the Flex-Deluge algorithm
developed by Burke and Bykov[10].

Table 5 The best results obtained by MAVN and other optimization methods applied to
the Carter datasets

Dataset MAVN
Di Gaspero

&
Schaerf

Allende
et al.

Caramia
et al.

Abdullah
et al.

Ayob
et al.

Burke
&

Bykov

CAR91 4.58 6.2 4.39 6.6 5.21 4.90 4.32
CAR92 3.80 5.2 3.71 6.0 4.36 4.51 3.67
EAR83 32.67 45.7 32.62 29.3 34.84 36.28 32.62
HEC92 10.03 12.4 10.05 9.2 10.28 11.06 10.06
KFU93 12.87 18.0 12.90 13.8 13.46 14.74 12.80
LSE91 10.02 15.5 9.82 9.6 10.24 12.08 9.78
PUR93 4.46 - - 3.7 - 4.66 3.88
RYE93 8.08 - - 6.8 8.74 10.67 7.91
STA83 157.03 160.8 157.03 158.2 159.28 157.32 157.03
TRE92 7.87 10.0 7.71 9.4 8.13 8.92 7.64
UTA92 3.18 4.2 3.04 3.5 3.63 3.58 2.98
UTE92 24.77 29.0 24.77 24.4 24.21 26.36 24.78
YOR83 35.11 41.0 34.70 36.2 36.11 38.97 34.71
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6 Discussion and future work

In this paper, a framework to solve the UETP is presented. Using the frame-
work, it is possible to experiment with the application of different algorithms
and different neighborhoods very easily. In addition, the design of the frame-
work allows the application of different evaluation methods that can use hard-
ware accelerators [19]. Algorithmic parameters and the choice of moves that
are active have a significant impact in the quality of the generated solutions.
An initial experimentation for offline parameter selection can be found in [3].
In the future, we will investigate the use of online machine learning techniques
to improve the sequence of the application of the available algorithms and the
dynamic selection of neighborhoods.
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ante coloreado de grafos. Tecnoloǵıa y desarrollo 15 (2017)
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Hybridizing Constraint Programming and Meta-
Heuristics for Multi-Mode Resource-Constrained
Multiple Projects Scheduling Problem

Arben Ahmeti · Nysret Musliu
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Abstract The Multi-Mode Resource-Constrained Multiple Projects Schedul-
ing Problem (MMRCMPSP) is an important real-life problem. The aim is to
schedule activities belonging to multiple project instances respecting differ-
ent shared resources, precedence, and time constraints. To solve this problem
we propose a new hybrid approach combining constraint programming (CP)
and a meta-heuristic based algorithm. To this aim, we propose and evaluate a
CP model that includes all constraints of MMRCMPSP. The hybrid approach
takes advantage of the complementary features of CP and meta-heuristics.
Our method outperforms state-of-the-art methods for this class of problems
by generating new upper bounds for several instances. Moreover, we evaluate
our method on the existing well-studied benchmark instances for multiple-
mode resource constrained single project scheduling problems and provide new
upper bounds for many instances.

Keywords Meta-Heuristics and Constraint Programming · Hybrid approach ·
Iterated Local Search · Project Scheduling · Min Conflicts

1 Introduction

Scheduling problems sum up a class of various combinatorial optimization
problems of high interest for academics and industry. In particular, project
scheduling is an important representative of this type of problems that usually
has to deal with scheduling of activities of project/s under different types of

Arben Ahmeti
Institute of Logic and Computation, DBAI, TU Wien
E-mail: aahmeti@dbai.tuwien.ac.at

Nysret Musliu
Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and
Scheduling, Institute of Logic and Computation, DBAI, TU Wien
E-mail: musliu@dbai.tuwien.ac.at

188

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



Arben Ahmeti, Nysret Musliu

constraints (resource constraints, precedence constraints, time horizons, etc.)
and different types of objectives. One of the most studied problems of this class,
Resource Constrained Project Scheduling Problem (RCPSP), have to deal with
scheduling of activities of a project that require a certain amount of resources
and are subject to precedence constraints among them. According to a review
article [1], the RCPSP belongs to the group of NP-hard optimization prob-
lems. In many cases, the objective of this problem is the minimization of the
project makespan. One of the most prominent benchmark libraries for RCPSP
instances, PSPLIB, is provided by Kolisch and Sprecher [2]. Various enhanced
versions of the RCPSP of academic and engineering interest have been intro-
duced over time. A general variant (Multi-Mode Resource-Constrained Multi-
ple Projects Scheduling Problem (MMRCMPSP)) of RCPSP is presented at
the MISTA 2013 challenge.
In this paper, we focus on the MMRCMPSP problem. It extends RCPSP prob-
lem from two perspectives [3]: activities of a project may have more than one
mode of execution (MRCPSP problem) and multiple instances of projects shar-
ing scarce resources need to be scheduled simultaneously (RCMPSP problem).
MMRCMPSP is a closer representation of the real-world scheduling problems.
It consists on simultaneous scheduling of multiple project instances in an op-
timal schedule while their activities can be executed in more than one of
modes and are subject to different types of resources, time, and precedence
constraints. Moreover, the main objective in case of this problem is the min-
imization of the total project delay (TPD) and the total makespan (TMS) of
projects serves as a tie-breaker.
MMRCMPSP as a more generalized form of project scheduling problem at-
tracted the attention of many researchers. In the review article [4] a combina-
tion of Monte-Carlo Tree Search (MCTS) and hyper-heuristics were proposed.
This was the winning approach of MISTA 2013 challenge. Geiger [5] introduced
an iterated variable neighborhood search with four neighborhood structures.
In [6] a multi-neighborhood, parallel local search approach was proposed. An-
other meta-heuristic approach based on iterated local search was introduced
in [7]. [8] implemented a genetic algorithm for a multi-project environment
with projects with assigned due dates and a resource dedication policy. A
stochastic local search procedure with two neighborhoods was implemented
by [9]. In [10] a genetic algorithm for mode assignment and a priority rules
heuristic for job selection in MMRCMPSP was implemented. Other proposed
methods for this problem may be found in [11], [12], [13] and [14]. Regardless
of the contributions of many researchers to MMRCMPSP, optimal solutions
of many existing instances are not known yet. In this paper, we introduce a
new hybrid approach that combines a constraint programming approach with
a meta-heuristic that extends the previous method proposed in [7]. Our ap-
proach outperforms the best existing algorithm [4] (to our best knowledge) for
MMRCMPSP, by providing new upper bounds to many benchmark problems.
Additionally, our approach provides new upper bounds for fifty benchmark
instances (MMLIB library) for the MRCPSP problem [15]. The main contri-
butions of this paper are:
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– We provide a constraint programming model for MMRCMPSP and apply a
state of the art CP solver to solve existing problem instances. Although con-
straint programming has been used previously for related project schedul-
ing problems, to the best of our knowledge this is the first time that CP
is applied for MMRCMPSP, which includes several extensions. Our model
was tested with thirty benchmark instances from MISTA 2013 challenge.
Long runs of algorithm resulted in new upper bounds for six instances.
Execution of algorithm under time restriction conditions (5 minutes run
per instance) gave the best results for three instances compared to other
best solvers.

– The improvement of a local search based algorithm proposed in [7]. The
improved version includes a new neighborhood operator that improved
results of [7] for most benchmark instances. Additionally, it provides new
upper bounds for five multiple-mode resource constrained single project
scheduling problem instances.

– Proposal of a hybrid algorithm that combines the CP model and the im-
proved meta-heuristic approach. The hybrid algorithm improved further
the results and outperformed best state-of-the-art solver ([4]) for MMR-
CMPSP in many instances. We provide new upper bounds for almost half
of the benchmark instances (fourteen new upper bounds and four equal
upper bounds out of thirty) and fifty new upper bounds for multiple-
mode resource constrained single project scheduling problem benchmark
instances.

2 Problem Description

The MMRCMPSP problem [3] is comprised of a set of n projects: P =
{1, 2, .., n} and every project i ∈ P is comprised of activities Ji that are ex-
ecuted in more than one of the modes taking into account different shared
resources, time, and precedence constraints. Also, every project has a release
date ri, i.e. the earliest time when its activities could start. Every activity
j ∈ {1, 2, .., |Ji|} of every project has to be scheduled, i.e. its starting time
sij has to be defined considering all constraints. The first and last activi-
ties of projects are dummy activities with only one execution mode, duration
equal to zero and no resource requirements. There are sets of renewable and
non-renewable resources Li ∈ {1, ..., |Lρi |, |L

ρ
i |+ 1, ..., |Lρi |+ |Lvi |}, where Lρi ∈

{1, ..., |Lρi |} indicates renewable resources and Lvi ∈ {|L
ρ
i |+ 1, ..., |Lρi |+ |Lvi |}

non-renewable resources. All non-renewable resources have fixed capacities for
the whole project duration, for every project. Renewable resources have a fixed
capacity per time unit. There are local renewable resources dedicated to a spe-
cific project only and global renewable resources (Gρ) that are shared among
all the projects. The availability of global renewable resources is limited by cρg,
g ∈ Gρ. There are no global non-renewable resources. Every activity has more
than one available execution mode. An execution mode of an activity defines
time duration required to complete the activity and its specific resource re-
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quirements. Execution modes of activities are defined by Mij ∈ {1, ..., |Mij |}
and dijm (duration of activity j ∈ Ji, i ∈ P in modem ∈Mij). Moreover, rρijml,

rvijml and rρijmg determine the requirements for local renewable, non-renewable
and global renewable resources, respectively, when activity j ∈ Ji, i ∈ P is
processed in mode m ∈ Mij . Feasible projects schedules must always satisfy
following hard constraints:

– For every local non-renewable resource l ∈ Lvi dedicated to every project
i ∈ P , its total consumption cannot exceed its capacity l ≤ cil.

– For every local renewable resource l ∈ Lρi dedicated to every project i ∈ P ,
its total consumption at time unit t cannot exceed its capacity l ≤ cil.

– For every global renewable resource g ∈ Gρ, its total resource consumption
at time unit t cannot exceed its capacity l ≤ cρg.

– Particular activities may require the completion of other activities before
they start. In that case, feasible schedules must fulfill all precedence con-
straints between such activities, i.e. if activity j ∈ Ji, which is executed in
mode m, must precede activity j′ ∈ Ji.

– Release time of every project is respected, i.e. for each activity j ∈ {1, 2, .., |Ji|}
of every project i ∈ P , its start time sij ≥ 0 and sij ≥ ri.

The objective is to find a feasible schedule with minimum total project delays
(TPD) and projects total makespan (TMS). TPD is the primary objective
and TMS is used as a tie-breaker. Project delay of a project i is defined as the
difference between Critical Path Duration (CPD), a theoretical lower bound
on the earliest finish time of the project, and the actual project duration
(makespan):

PDi = MSi − CPDi (1)

MSi - makespan of project i is calculated as difference:

MSi = fi − ri (2)

fi - finish time of project i,
ri - the release date of project i,
Total project delay is calculated as:

TPD =
n∑
i=1

PDi (3)

n - the number of projects.

Total makespan is the duration of the complete multi-project schedule:

TMS = max
i∈P

(fi)−min
i∈P

(ri) (4)

Both soft constraints are combined into a single objective function as follows:

F = a ∗ TPD + TMS (5)

where value a in the MISTA 2013 challenge was a = 100, 000.
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3 The constraint programming model for MMRCMPSP

As stated earlier, MMRCMPSP generalizes other types of scheduling problems
and is closer to real-world problems representations. Different models for dif-
ferent scheduling problems have been presented in the literature. We built our
model using several features of the model for MRCPSP scheduling problems
presented in [16].
Main extensions to our MMRCMPSP model are related to modeling of:

– Constraints related to a set of global renewable resources ( Gρ) that are
shared among all the projects and their availability is limited by cρg, g ∈ Gρ
(equation 18). There are no global non-renewable resources.

– Release dates constraints and dummy activities for every project (equations
7-9).

– Implementation of an objective function that consists on finding a feasible
schedule that fulfills constraints while minimizing the total project delay
(TPD) and the total makespan (TMS). Project delay is defined as the
difference between Critical Path Duration (CPD) and the actual project
duration (makespan). TPD is the primary objective and TMS as the dura-
tion of the whole multi-project schedule is used as a tie-breaker (equation
20).

– Multi-dimensional data structures to model multi-project instances execu-
tion modes, local renewable and non-renewable resources and add global
resources.

We further describe the main components and constraints of the CP model. We
have used the IBM CP Optimizer to implement it. According to the problem
definition, every project i ∈ P = {1, 2, .., n} is comprised of a set of non-
preemptive activities or jobs Ji and has a release date ri, i.e. the earliest time
when the activities of the project i can start.
Activities are modelled as decision variables:

intervalJi ∀i ∈ P (6)

and projects’ release dates constraints and dummy activities:

startOf(si) = ri ∀i ∈ P, si ∈ Pi (7)

startOf(si) ≤ startOf(j) ∀i ∈ P, j ∈ Pi (8)

endOf(j) ≤ startOf(ei) ∀i ∈ P, ei, j ∈ Pi (9)

Every activity j ∈ Ji, of every project i ∈ P , has one or more available execu-
tion modes m ∈Mij . The execution mode of an activity determines duration
dijm required to complete the activity and its specific resource requirements.
Execution modes and processing time in every mode for every activity are
modeled as decision variables in our model as well:

intervalmij optional ∀i ∈ P, j ∈ Ji,mij ∈Mij (10)
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interval dijm optional ∀i ∈ P, j ∈ Ji,m ∈Mij (11)

Since, every activity j ∈ Ji, can be executed in only one of its modes, then:

alternative(j, [mij ]∈Mij) ∀i ∈ P, j ∈ Ji (12)

Resources are expressed as cumul-function expressions:

cumulFunction cil ∀i ∈ P, l ∈ Lρi (13)

cumulFunction cρg ∀g ∈ Gρ (14)

intExprhil ∀i ∈ P, l ∈ Lνi (15)

Feasible schedules of projects must always fulfill following hard constraints:

– For each project i ∈ P and each local non-renewable resource associated
to that l ∈ Lνi , total resource consumption does not exceed its capacity
l ≤ hil. Since non-renewable resources have fixed capacities for the whole
project duration we modeled them in our model as scalar expressions:∑

j∈Ji

∑
mij∈Mij

presenceOf(mij)(rijm
ν
l ) ≤ hil ∀i ∈ P, l ∈ Lνi (16)

In MMRCMPSP model every project has its own list of non-renewable
resources.

– For each project i ∈ P and each local renewable resource associated to that
l ∈ Lρi , total resource consumption does not exceed its capacity l ≤ cil.
As the name implies local renewable resources are dedicated to a specific
project and have a fixed capacity per time unit, meaning their capacity
constraints have a temporal dimension. Therefore, they are modeled as
cumulative functions:∑

j∈Ji

∑
mij∈Mij

pulse(mij , rijm
ρ
l ) ≤ cil ∀i ∈ P, l ∈ L

ρ
i (17)

In MMRCMPSP model every project has its own list of renewable re-
sources.

– For each time unit t and each global renewable resource g ∈ Gρ, total
resource consumption at t does not exceed its capacity l ≤ cg. Global
renewable resources are modeled similarly as local renewable resources as
cumulative function. There is only one global resources list common to all
projects: ∑

i∈P

∑
j∈Ji

∑
mij∈Mij

pulse(mij , rijm
ρ
g) ≤ cg ∀g ∈ Gρ (18)

There is no global non-renewable resources list.
– Feasible schedules must fulfill all precedence constraints between activities:

endBeforeStart(a, j) ∀i ∈ P, a, j ∈ Pi (19)
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According to definition the main objective function of MMRCMPSP problem
consists of minimizing total project delay of projects and the projects total
makespan as tie-breaker. It is defined as:

f = min(max(endOf(j) +
∑
i∈P

(α ∗max(endOf(Pi))))),∀j ∈ Ji (20)

α – is a constant.

4 Description of extended meta-heuristic

Our main aim regarding the hybrid algorithms for MMRCMPSP is to combine
two complementary search strategies. Various classifications and taxonomies
for hybrid approaches can be found in the literature [17], such as combining
meta-heuristics with constraint programming, combining meta-heuristics with
exact methods from mathematical programming, combining meta-heuristics
with other meta-heuristics or machine learning techniques. We opted for com-
bination of an exact approach, a CP model, with a local search based algorithm
that extends the algorithm in [7], which combines min conflicts and tabu search
heuristics embedded in an iterated local search framework.

4.1 Solution representation

In our extended meta-heuristic solutions are represented as pair of vectors:−→
S = {−→π ,

−→
M}, where −→π represents the vector of all activities from all projects

and
−→
M is its corresponding modes vector:

−→π = {1, 2, .., |J1|, |J1|+ 1, .., |J1|+ |J2|+ ..+ |Jn|} (21)

Analogous representations were employed by [4], [6], [5] and [7]. Construc-
tion of a solution alternative is done by sequentially assigning activities into a
schedule as early as possible.
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Algorithm 1 SwapAndModeCh(s) neighborhood operator
repeat

Improved← false
acti ← random.select.from(Ji)
while not IsSuccessor(s, acti+1) do

s′ ← Swap(s, acti, acti+1)
for all modes of acti+1 do

s′′ ← OneModeChange(s′, acti+1)
if (eval(s′′) < eval(s)) then

s← s′′

Improved← true
end if

end for
end while

until not Improved

First, we added a complex neighborhood operator, SwapAndModeCh, com-
prised of two existing simple ones SwapActivity and OneModeChange noted
in [4], [6], [5]. As our CP solver (IBM CP optimizer) also includes a large
neighborhood search, we excluded from the implementation of local search
four-mode-change (MinConFMC ) neighborhood operator due to the fact that
it generates also large neighborhoods. SwapAndModeCh applies swap between
an activity and its successor along the schedule until the precedence constraint
is not violated. After each swap, activity is assigned each of its modes in turn
and if there is an improvement the solution is accepted (algorithm 1).
Figure 1 illustrates the generated neighborhood by this operator assuming that
acti = 3, SuccessorOf(acti) = 5 in a given input solution s. Activity 3 swaps
with its descendants in the schedule all the way up to its successor, activity 5,
with whom it has a precedence constraint.

Fig. 1 SwapAndModeCh(s) neighborhood operator

The implementation of improved meta-heuristic is designed for multi-threaded
execution environment (algorithm 2).
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Algorithm 2 Improved algorithm ILS Min Con(s, Time)

for all
−→
Si do−→

Si ← s
end for−→
Sbest ← ∅,

−→
Sbestlocal ← ∅

NoImprovement← true, LocalImprovement← true
repeat

repeat

for all
−→
Si do

CloneProj(), CloneProjPart(), ComE(), ComF ()
end for
if (BroadcastBestLocal()) then

NoImprovement← false
else

NoImprovement← true
end if

until NoImprovement
Improve← true
while Improve do

for all
−→
Si do

MinConOMC()
end for
if (BroadcastBestLocal()) then

LocalImprovement← true
else

Improve← false
end if

end while
if LocalImprovement then

for all
−→
Si do

PCom(),MinConTMC()
end for

else
for all

−→
Si do

SwapAndModeCh(
−→
Si), INV S(),MinConSJL(),MinConSJR()

end for
BroadcastBestLocal()

end if
if (
−→
Sbestlocal <

−→
Sbest) then

−→
Sbest =

−→
Slocal, NoImprovement← false

else
NoImprovement← true

end if
LocalImprovement← NoImprovement
if (not LocalImprovement) then

LocalImprovement← not LocalImprovement
PerturbationSize← PerturbationSize + 1

else
PerturbationSize← 1

end if
for all

−→
Si do

Perturbate(
−→
Sbestlocal, P erturbationSize), Reset(

−→
Sbestlocal)

end for
until Time
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Other neighborhood operators depicted in algorithm 2, one mode change (Min-
ConOMC), two-mode change (MinConTMC), shift an activity to its last pre-
decessor (MinConSJL), shift an activity to its first successor (MinConSJR),
invert subsequence of activities (INVS), compress project and move to the
end (ComE), compress project and move to the front (ComF), clone a project
(CloneProj), clone a project partially (CloneProjPart) and clone a sequence
from a project (CloneSeq) are implemented similar to the implementation in
[7]. Definition of BroadcastBestLocal() method is depicted in algorithm 3.

Algorithm 3 BroadcastBestLocal()

minLocal← min
i∈{1,..,4}

eval(
−→
Si)

stemp ← ∅
if (eval(

−→
Sbestlocal) > minLocal) then

minLocal = min
i∈{1,..,4}

eval(
−→
Si)

stemp ←
−→
S
arg min

i∈{1,..,4}

−→
Si

for all
−→
Si do−→

Si ← stemp

end for−→
Sbestlocal ← stemp

return true
else

return false
end if

4.2 Acceptance criteria and perturbation

Similar to the implementation in [7], we accept only better solutions and im-
plemented adaptive perturbation strategy in relation to instance size. The
perturbation consists of changing modes of up to 10 % of randomly selected
activities from the schedule.

4.3 Parameter tuning

In this algorithm, two adaptive tabu lists are implemented: one tabu list for
operators that manipulate modes and one for operators that manipulate po-
sitions of activities in the schedule. The dimensions of these tabu lists are
parameterized and experimentally determined as a percentage of the total
number of activities in a given instance. Other parameters we fine tuned are:
size of variable set for MinConOMC and MinConTMC operators and pertur-
bation size threshold. Parameter values are fine tuned using the SMAC tool
([18], [19]) and obtained are depicted in Table 1.
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Table 1 Parameters used for tests

Parameter Value Domain of values
ModeTBLength 30% {10%, 15%, 20%, 25%, 30%, 35%, 40%}
SeqTBLength 20% {10%, 15%, 20%, 25%, 30%, 35%, 40%}
VarSetSize 11 {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
PertSizeThreshold 10% {3%, 5%, 7%, 10%, 13%, 15%, 20%}

5 Hybrid Method

Our hybrid implementation consists of sequential execution of constraint pro-
gramming model and extended meta-heuristic explained in the previous para-
graph. According to [17] it could be classified as high-level relay hybrid (HRH)
approach. The output solution of one method serves as initial solution for the
other. A perturbation of the best incumbent solution is performed if there was
no improvement between every sequential call of algorithms. The perturbation
strategy is based on a mode change of an activity and inversion of a short se-
quence of activities randomly selected from the schedule. It always produces
feasible solutions. The perturbed solution serves as a starting point for the CP
model. We experimented with allotted execution time for every algorithm in
ratio two to one and three to one in favor of CP model within an execution
sequence. Slightly better results were obtained with ratio three to one (algo-
rithm 4).
In our hybrid method data reading technicalities for MMRCMPSP and MR-
CPSP problems are implemented. Proper data structures (interval variable ar-
rays, multi-dimensional cumulative functions arrays, scalar expression arrays,
constraints, etc.) for the proper type of problems are generated and populated.

6 Computational results

We performed experiments on thirty benchmark MMRCMPSP problem in-
stances provided in MISTA 2013 challenge. Algorithms presented in this chal-
lenge were executed in a computer with a 64-bit Intel Core i7 processor (3.4
GHz) CPU of eight cores, 8 GB RAM. Every algorithm was executed ten times
for each instance and five minutes for every run. All of our tests were executed
on a machine with 64-bit Intel Core i5 processor (3.3 GHz) CPU of four cores,
8GB RAM. Algorithms are implemented in the programming language C#
(Visual Studio 2019 development environment). In order to perform experi-
ments in approximately identical conditions, we determined running time in
our machine according to benchmark program (the 64-bit version) of the 2011
International Timetabling Competition. 1 The execution of this program on
our computer lasted 690 seconds, while on the computer used in the com-
petition 645 seconds. Therefore, we set the running time on our computer

1 https://www.utwente.nl/ctit/hstt/itc2011/benchmarking/
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Algorithm 4 Hybrid approach for MMRCMPSP combining a CP model and
an extended meta-heuristic

s← ∅
s′ ← ∅
CP.Add(Projects, Activities,Modes,Resources)
CP.Add(ConstraintsTypes : (7), (8), (9), (16), (17), (18)and(19))
{See equations (7), (8), (9), (16), (17), (18) and (19)}
CP.Add(ObjectiveFunction : equation(20))
CP.SetParameters(T ime ∗ 3, SearchType,RandomSeed)
while not Termination Condition do

CP.Solve()
s← CP.ExtractSolution()
s′′ ← ILS Min Con(s, T ime)
if (eval(s′′) < eval(s′)) then

s′ ← s′′

else
acti ← random.select.from(Ji)
s← RandomOneModeChange(s′, acti)
s← RandomInvertSubSequence(s)

end if
sp← CP.Solution()
sp.Set(s)
CP.SetStartingPoint(sp)

end while

to 321 seconds, accordingly. Additional experiments were accomplished under
different settings with and without time restrictions.

6.1 Benchmark instances

Every set of benchmark instances (A, B and X) is comprised of ten instances.
Sizes of instances vary from smallest one comprised of 2 projects and 20 activi-
ties up to the biggest one with 20 projects and 600 activities. Even though, we
were focused on solving MMRCMPSP problem instances, we tested our algo-
rithms on solving multi-mode resource-constrained project scheduling problem
instances introduced in [15] as well. New upper bounds were obtained for many
instances from each set of problems.

6.2 Evaluation of the hybrid method

Our hybrid approach outperformed the best solver implemented in [4] for MM-
RCMPSP problem when running algorithms under no-restriction conditions.
It generated new upper bounds for the majority of instances of this group,
(Table 2). Solver presented in [4] ran 2500 times for each instance and 5 min-
utes for every run. We executed our solver for 24 hours only once for each
instance. Many of the instances converged much earlier, within a few minutes.
Comparison of results of our hybrid method with those of the solver imple-
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Table 2 Comparison of our hybrid approach’s results (TPD/TMS) with the best solvers
results so far for MMRCMPSP problem

Inst. [4] [5] [6] Our algorithm New upper bounds
A1 1/23 1/23 1/23 1/23 Equal
A2 2/41 2/41 2/41 2/41 Equal
A3 0/50 0/50 0/50 0/50 Equal
A4 65/42 65/42 68/50 65/42 Equal
A5 150/103 153/104 154/104 151/104
A6 133/99 144/94 151/94 132/90 Yes
A7 590/190 601/206 626/194 595/189
A8 272/148 319/162 281/147 257/147 Yes
A9 197/122 225/128 212/127 186/122 Yes
A10 836/303 920/313 983/309 854/307
B1 345/124 349/130 358/131 348/127
B2 431/158 481/171 431/159 404/160 Yes
B3 526/200 604/214 585/196 515/204 Yes
B4 1252/275 1283/287 1435/294 1296/283
B5 807/245 866/252 867/254 813/250
B6 905/225 1067/246 970/224 888/219 Yes
B7 782/225 827/232 876/234 800/233
B8 3048/523 3618/565 3001/520 2871/525 Yes
B9 4062/738 4606/783 4753/741 4093/736
B10 3140/436 3541/473 3123/430 3057/437 Yes
X1 386/137 - 392/142 385/139 Yes
X2 345/158 - 416/167 342/163 Yes
X3 310/187 - 332/177 287/183 Yes
X4 907/201 - 980/209 896/204 Yes
X5 1727/362 - 1904/369 1757/370
X6 690/226 - 821/237 700/232
X7 831/220 - 909/232 854/224
X8 1201/279 - 1389/281 1188/279 Yes
X9 3155/632 - 3945/639 3269/641
X10 1573/373 - 1718/377 1572/374 Yes

mented by [4] are also given in Figure 2, where differences between results for
every benchmark instance of both solvers are visually presented.

We also evaluated our solver on MMRCSPSP instances and experiments re-
sulted with new upper bounds for fifty instances and equal results for many
more compared to results of state-of-the-art solvers (Table 3). In experiments
run under time restriction conditions, i.e. 10 runs per instance and 5 minutes
per each run, our hybrid solver generated best results for nine and equal re-
sults for four benchmark instances (Table 4). Average results and standard
deviations are reported, too. Differences between results of our solver and best
solver [4] under these restrictions are presented graphically in Figure 3. It can
be noticed that for very large instances, e.g. B9 and X9, hyper-heuristic ap-
proach performs better compared to our hybrid method. This is due to the
nature of the CP model that is a constituent part of the hybrid method, it
performs very well for small and medium instances.
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Fig. 2 Comparison of our results (TPD/TMS) with the best solver’s results ([4]), under no
time restriction conditions for MMRCMPSP problem

Fig. 3 Comparison of our results (TPD/TMS) with the best solver’s results ([4]), under
time restriction conditions for MMRCMPSP problem
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Table 3 New upper bounds achieved by the hybrid method for MRCPSP problem

MMLIB Instances
mmlib50 mmlib100 mmlibPlus

Inst. Makespan Inst. Makespan Inst. Makespan
J507 1.mm 43 J1008 5.mm 49 Jall146 1.mm 64
J507 5.mm 40 J10045 3.mm 53 Jall185 3.mm 107
J5043 5.mm 63 J10074 4.mm 75 Jall193 3.mm 75
J5045 4.mm 35 J10076 3.mm 58 Jall254 3.mm 81
J5046 5.mm 38 J10079 1.mm 128 Jall256 3.mm 113
J5047 5.mm 38 J10080 5.mm 83 Jall302 1.mm 47
J5048 2.mm 39 J10081 1.mm 85 Jall344 4.mm 83
J5080 5.mm 69 J10081 2.mm 74 Jall346 2.mm 78

- - J10081 3.mm 70 Jall347 3.mm 57
- - J10082 3.mm 78 Jall363 1.mm 57
- - J10082 4.mm 94 Jall371 1.mm 84
- - J10083 2.mm 79 Jall372 3.mm 72
- - J10083 3.mm 71 Jall374 4.mm 66
- - J10084 3.mm 78 Jall394 2.mm 102
- - J10084 5.mm 73 Jall399 1.mm 237
- - J10092 2.mm 80 Jall401 2.mm 193
- - J10092 5.mm 71 Jall410 5.mm 62
- - J10094 1.mm 54 Jall458 3.mm 79
- - - - Jall509 1.mm 138
- - - - Jall512 1.mm 132
- - - - Jall537 3.mm 133
- - - - Jall537 4.mm 104
- - - - Jall556 2.mm 99
- - - - Jall566 5.mm 124

6.3 Evaluation of the extended meta-heuristic

We have accomplished separate tests with extended meta-heuristic and our CP
model under time restriction conditions. It turned out that the extended meta-
heuristic slightly improved most of the MMRCMPSP results (the best results,
average and standard deviation) in comparison with the implementation in
[7] (Table 6). According to [7] their solver is competitive to the third ranked
solver under time restrictions. Meta-heuristic approach provided better results
in nine and equal in three instances compared to our CP model and none
compared to hybrid method.
Additionally, we tested our extended meta-heuristic with MMRCPSP problem
benchmark instances. Tests resulted in the achievement of new upper bounds
for five instances (Table 5).
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Table 4 Comparison of our results (TPD/TMS) with the best solver’s results ([4]), under
time restriction conditions for MMRCMPSP problem

[4] Hybrid approach
Inst. Best Avg Std Best Avg Std
A1 1/23 - - 1/23 1/23 0
A2 2/41 - - 2/41 2/41 0
A3 0/50 - - 0/50 0/50 0
A4 65/42 - - 65/42 65/44 0/2
A5 153/105 - - 152/104 165/106 8/2
A6 147/96 - - 144/92 160/100 5/3
A7 596/196 - - 615/205 639/201 2/5
A8 302/155 - - 276/150 291/150 11/3
A9 223/119 - - 200/121 215/128 11/3
A10 969/314 - - 921/313 982/325 41/7
B1 349/127 352/128 - 364/126 379/128 11/2
B2 434/160 454/168 - 419/162 461/164 21/2
B3 545/210 554/211 - 566/212 601/212 19/1
B4 1274/289 1305/284 - 1368/291 1464/291 65/6
B5 820/254 833/254 - 887/262 923/262 18/4
B6 912/227 953/232 - 925/233 992/236 38/4
B7 792/228 801/232 - 859/239 921/244 49/5
B8 3176/533 3314/548 - 3145/561 3511/568 179/14
B9 4192/746 4264/755 - 5262/884 5740/922 320/30
B10 3249/456 3338/460 - 3415/473 3583/469 137/6
X1 392/142 405/142 - 408/142 432/145 21/2
X2 349/163 357/164 - 375/167 402/170 20/4
X3 324/192 330/193 - 318/187 346/190 19/4
X4 955/213 971/212 - 939/210 1033/209 53/2
X5 1768/374 1785/373 - 1878/386 1956/388 43/5
X6 719/232 738/241 - 768/240 840/249 72/8
X7 861/237 868/236 - 890/235 925/239 24/5
X8 1233/283 1257/289 - 1310/287 1452/300 92/8
X9 3268/643 3303/647 - 3840/718 4134/750 163/15
X10 1600/381 1614/382 - 1727/403 1777/403 36/5

Table 5 New upper bounds achieved by meta-heuristic for MMRCPSP problem

Project total makespan new upper bounds
Instance Our algorithm Different authors
Jall127 3.mm 142 143
Jall128 5.mm 94 95
Jall184 1.mm 177 179
Jall263 4.mm 146 147
Jall289 5.mm 196 197

6.4 Evaluation of CP Model

We also performed tests with our CP model under time restriction condi-
tions. According to [16] the search in a CP model can be directed through
configuration of several parameters, e.g. search type, random seed, time limit,
etc. Results of the CP model depicted in Table 6 for MMRCMPSP instances
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are performed with Search Type = Restart, Random Seed = 1292619981 and
Time Limit = 300 s. In restart search mode the algorithm restarts and ex-
ecutes depth first search after a parameterized number of failures. Another
search type we have experimented with is automatic search that employs large
neighborhood search and failure directed search [16]. The former one tries to
converge quickly to a good quality solution and the latter one tries to prove
that no better solution exists than the existing one when the search space is
too small or LNS cannot improve further the solution. CP model uses random
seed parameter for tie-breaking situations only. In Table 6 it can be seen that
the CP model provided slightly better results for three instances compared to
hybrid method and three compared to [4].
The hybrid approach seems to be far more successful than executing the con-
stituent algorithms separately. In the case of very large instances, under short
time restriction conditions, e.g. MISTA challenge conditions, meta-heuristic
approaches appear to be slightly better. Under no time restriction conditions,
the hybrid approach outperforms all solvers.

7 Conclusions and future work

In this paper we investigated three approaches for MMRCMPSP: a CP model,
an extended meta-heuristic and a hybrid approach combining the first two
solvers. We performed separate experiments with all solvers on existing MM-
RCMPSP problem benchmark instances and compared to the state-of-the-art
solver for this problem. It turned out that the meta-heuristic approach pro-
vided better results in nine instances compared to our CP model and none
compared to the hybrid method. CP model provided better results for three
instances compared to the hybrid method and three compared to one of the
best solvers ([4]) for restricted time conditions. Regarding the hybrid approach,
we performed extensive tests in various experimental settings. It outperformed
best existing solver for MMRCMPSP in several instances and achieved new
upper bounds for fourteen out of thirty instances under no time restrictions
conditions. Under time restriction, the model generated best results for nine
and equal results for four benchmark instances. For some very large instances,
the best existing solver ([4]) provided better results. Additionally, we tested
our approach with multiple-mode resource constrained single project schedul-
ing problems well-known instances and experiments resulted with new upper
bounds for fifty instances.
Our main objective was to evaluate a hybrid approach that combines two
complementary search strategies. In this study, we introduce a successful com-
bination of an exact model with a meta-heuristic approach and a certain per-
turbation mechanism. We consider that it is of high interest to investigate
further hybrid approaches that combine different search strategies in order to
create a robust and efficient method. Especially, the role of meta-heuristics
in a hybrid method should be further studied. In our case, we noticed that
for very large instances (B9 and X9), under short time restrictions, hyper-

204

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



Arben Ahmeti, Nysret Musliu

Table 6 Comparison of extended meta-heuristics results (TPD/TMS) with the best solvers
results for MMRCMPSP problem under time restriction conditions

Ins.
Extended

meta
heuristic

[7] CP Model hybrid method [4] [5] [6]

A1 1/23 1/23 1/23 1/23 1/23 - -
A2 2/41 2/41 2/41 2/41 2/41 - -
A3 0/50 0/50 0/50 0/50 0/50 - -
A4 65/42 65/45 65/45 65/42 65/42 - -
A5 162/107 163/108 173/110 152/104 153/105 - -
A6 156/94 152/96 162/104 144/92 147/96 - -
A7 644/203 652/208 655/197 615/205 596/196 - -
A8 337/166 335/163 279/148 276/150 302/155 - -
A9 245/139 253/137 212/124 200/121 223/119 - -
A10 969/338 980/331 1017/317 921/313 969/314 - -
B1 355/129 361/129 375/130 364/126 349/127 353/125 363/132
B2 498/177 502/180 438/167 419/162 434/160 490/176 434/160
B3 639/230 637/224 586/206 566/212 545/210 598/215 660/207
B4 1386/302 1415/290 1493/286 1368/291 1274/289 1274/289 1548/295
B5 955/275 927/268 922/267 887/262 820/254 866/254 919/254
B6 1139/261 1146/253 936/227 925/233 912/227 1044/242 1128/232
B7 890/251 864/249 1003/252 859/239 792/228 834/234 908/246
B8 3687/628 3836/626 3113/544 3145/561 3176/533 3585/568 3276/529
B9 5858/948 5757/926 5253/833 5262/884 4192/746 4674/796 5373/769
B10 3636/456 3654/514 3295/455 3415/473 3249/456 3518/469 3325/447
X1 435/148 427/150 443/144 408/142 398/142 394/142 392/142
X2 419/175 408/174 405/167 375/167 349/163 368/165 418/165
X3 382/202 407/206 346/194 318/187 324/192 372/195 326/188
X4 1035/221 1081/221 996/208 939/210 955/213 970/215 986/207
X5 2083/393 2089/428 1940/376 1878/386 1768/374 1938386 2043/375
X6 967/281 953/284 799/243 768/240 719/232 844/253 880/240
X7 951/245 968/248 902/233 890/235 861/237 879231 944/234
X8 1584/329 1515/324 1366/288 1310/287 1233/283 1380/296 1478/289
X9 4374/790 4167/776 4320/760 3840/718 3268/643 3645/688 4169/662
X10 1938/437 1934/427 1739/396 1727/403 1600/381 1669/402 1851/385

heuristic approach still performed better than our hybrid approach. Since the
exact model relies on large neighborhood search and performs very well on
small and medium instances than it is up to meta-heuristics to perform ef-
ficient search within very short time conditions in order to provide excellent
results even in the case of very large instances. Furthermore, improving the
complementary search nature of algorithms that comprise a potential hybrid
method would be of valuable interest.
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Abstract We propose a new method based on iterated local search to solve
a Vehicle Routing and Scheduling problem that was recently introduced in
the VeRoLog Solver Challenge 2019. Our algorithm includes several neigh-
borhood search operators and destroy/repair heuristics. We propose two new
neighborhood operators aiming to address conflicts between requests and trips
for better allocation on days, vehicles and routes. Our algorithm was one of
the competitors of the VeRoLog Solver Challenge where 13 different teams
participated by submitting solutions for the instances from the all-time-best
challenge. Results on twenty-five instances presented by the organizer of the
challenge show that our approach provided second best result for one of the
instances, for six instances third best and for most of the rest fourth best
result.

Keywords Vehicle Routing · Scheduling · Metaheuristics

1 Introduction

The class of Vehicle Routing Problems is a family of combinatorial optimiza-
tion problems that arise in the field of logistics. Capacitated Vehicle Routing
Problem (CVRP) is the simplest and most well-known variant, whose objective
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is to find a sequence of visits for each truck and minimize the total distance
travelled, where all the customers are served, and the sum of demands for each
truck does not exceed the maximum capacity of a truck. CVRP instance that
uses only one truck with unlimited capacity is equivalent to the Travelling
Salesman Problem (TSP) which serves as proof that CVRP is also NP-Hard
problem. In CVRP all the routes start and end at a single depot, and the
number of trucks is not important. Different variations and extensions of VRP
have been defined and proposed as a result of many practical applications re-
sulting in several types of constraints and objectives. For example, there are
variations of VRP that include pickup and delivery requests (VRPPD), soft
or hard time window for the requests (VRPTW), multiple depot (MDVRP).
Vehicles might have different capacities (Heterogeneous VRP) and they are
allowed to make multiple trips (Multitrip VRP). For a more comprehensive
overview of the classification of VRP problems see [1].

As the number of models of VRP grows continually, so does the number
of methods and approaches proposed by researchers. Classical methods in-
clude several construction heuristics, for example, the Clarke and Wright sav-
ings algorithm. The Clarke and Wright heuristic, proposed at [2], repeatedly
merges two routes (starting from single request routes) by maximizing their
savings. Other important construction heuristics are the nearest neighbor and
the cheapest insertion, proposed by [21], that work by inserting requests into
routes following a strategy such as nearest neighbor or cheapest insertion.

Well-known classical algorithms include inter-route improvement methods
(k-opt moves based on TSP problem [11]), intra-route improvements like λ-
interchanges [15], Or-opt [14] and other move operators that basically ex-
change or relocate a number of customers between different routes or vehicles.

Further improvement of solutions was only possible with the use of meta-
heuristics based on a single solution and a population of solutions. Simulated
annealing was proposed by [15], tabu search was implemented in the algorithm
proposed by [3] to solve vehicle routing problems with time windows. Large
neighborhood search is used by many authors in general and one of the most
successful algorithms was Adaptive LNS, proposed by [16], which was able to
solve five different variants of VRP: VRPTW, VRPMD, OVRP, SDVRP, and
CVRP. The approach proposed in [7] was to use Variable Neighborhood Search
with operators such as 2-Opt, Or-Opt, inter-route relocate, or inter-route ex-
change embedded in Adaptive Large Neighborhood Search. A heuristic search
method that only uses a single neighborhood was proposed by [6]. It focuses
on techniques of fast manipulation of memory data during the preprocessing,
checks, and different speedups. In [10] the problem is divided into the techni-
cians and the deliveries subproblems, where the first one is treated as a Set
Covering Problem and the second part is treated and solved as a Bin Packing
Problem.

In this paper, we focus on the problem of Routing and Scheduling of De-
livery and subsequent Installations of machines. This variant of VRP was
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introduced on the VeRoLog Solver Challenge 2019 1, organized by EURO
Working Group on Vehicle Routing and Logistics Optimization (VeRoLog 2)
and ORTEC [8].

The challenge was organized in two parts: the first one was called all-time-
best challenge and the second restricted resources challenge. In all-time-best
challenge there were no restrictions in time or technology that could be used
to solve the problem, and there was a set of 25 instances called ”Early” that
were made available in the challenge. For the second part of the challenge, the
participants had to submit an algorithm that was used by organizers to solve
instances from the ”Hidden” set. In the restricted resources challenge there
was a time limit for an instance based on formula t = f ∗ (10 + n), where f
is the factor of the computing machine, n is the number of requests in the
instance and t is time in seconds.

VeRoLog Solver Challenge 2019 attracted the attention of several researchers
and 13 different teams participated by submitting solutions for instances from
all-time-best challenge. After this stage of the competition was closed, 8 best
teams were selected to participate in the restricted resources challenge. Or-
ganizers determined the final ranking for restricted resources challenge after
running the solvers submitted by each finalist for the hidden set of instances.

Main contributions presented in this paper are:

– A new approach for Vehicle Routing and Scheduling with Deliveries and In-
stallation of Machines. We present a local search comprised of min-conflicts,
nearest neighbor and destroy and repair heuristics embedded in an iterated
local search framework.

– Introduction of several neighborhood operators including two new neigh-
borhoods for the VRP problem.

– Evaluation of our approach with three sets of benchmark instances pro-
posed at different stages of the VeRoLog Solver Challenge 2019.

The final results of restricted resources challenge were announced in VeRoLog
Meeting in Seville on 4 June 2019 3, with top three teams giving their presen-
tations at the conference.

2 Problem Description

Vehicle Routing Problem with Delivery and Installation of the Machines (DIM)
is one of the newest problems in VRP, that was introduced by the EURO
Working Group on Vehicle Routing and Logistics Optimization (VeRoLog)
and ORTEC (see [8]). DIM is an extension of CVRP that combines routing
and scheduling aspects, which optimizes the distribution and installation of
vending machines on specific days. There is a planning horizon spanning over
a given number of days, different kinds of machines, and a set of technicians

1 https://verolog2019.ortec.com/
2 http://www.verolog.eu/
3 https://verolog2019.sciencesconf.org
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with different skills and different starting locations. Requests from customers
contain details such as the first and the last day within which a machine must
be delivered, the number of machines and type of machine. If a customer re-
quires different kinds of machines, then a request exists for each kind. Machines
have different sizes which must be taken into account when loaded into trucks
since trucks have a limited capacity. Delivery of machines is performed by a
fleet of identical trucks and each of them starts and ends the day in the depot.
Trucks can return many times in depot during a day but they also have a
limited maximum daily distance. After deliveries are made, installations must
be performed as soon as possible starting from the following day, otherwise,
there is a penalty for each day the machine installation is delayed. There is a
set of technicians that have different skills, meaning they can only install spec-
ified kinds of machines. Each technician may have a different home location,
where they start and end a route. They have a limited daily distance, a lim-
ited number of locations to visit and they have to take two days off after five
consecutive days of work. For each kind of machine, there is a cost associated
with each day between delivery and installation. The objective is to minimize
the total cost which includes the weighted sum of these components: total
distance travelled by trucks, number of total trucks, truck days (a day when a
truck is used), total distance travelled by technicians, number of technicians,
technicians’ days, and waiting times of machines for installations. Distances
between locations of the depot, customers, and technicians are calculated as
the ceiling of the Euclidean Distance.

In DIM problem, we are given a set of requests R = {1, 2, ..., n}, and
a set of days D = {1, 2, ..., dmax}. Each r ∈ R has its attributes including
location, first and last day between which machines must be delivered, type
of machines, and the number of them. The set T = {1, 2, ..., tmax} contains all
the technicians where each of them has a home location and a flag for each
kind of machine that shows if the technician is able to perform the installation
of that kind of machine. Each location is given as a pair of coordinates (x, y),
and the distance between any two locations is calculated with this formula
d = d

√
(xi − xj)2 + (yi − yj)2e

The aim is to design a set of vehicle routes DRdv = {dr1, dr2, dr3, ...}
for the deliveries, and a set of technician routes for the installations IRdt =
{ir1, ir2, ir3, ...} for each day d ∈ D, each vehicle, and each technician t ∈ T .

Each route dri ∈ DRdv starts from the depot, delivers the machines to
the customers, and ends at the depot. Also, each route iri ∈ IRdt starts from
the location of the technician t, performs the installation of the machines,
and ends at the starting location. We are also given a weight parameter for
each component of the cost, including: (1) vehicle distance, (2) vehicle days,
(3) vehicles’ number, (4) technicians’ distance, (5) technician days and (6)
number of technician employed. And at the end, there are the cost parameters
for each kind of machine, for the number of days a machine waits for the
installation (7). The goal is to minimize the total cost which is a sum of seven
components mentioned above and fulfill all hard constraints which are: for each
request, delivery must be done between the first and last day, and installation

210

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



Solving VRPDIM using ILS

can be performed starting from the following day of its delivery. A truck has
a limited capacity of machines it can deliver during one trip, and maximum
distance it can travel during a day. Technicians have a set of skills that specifies
which kinds of machines they can install, a maximum distance they can travel
during a day, and a maximum number of requests they can execute during a
day. Technicians are only allowed to work 5 consecutive days at maximum,
and if they do, then they are forced to take two days off.

3 General Description of our Approach

Our approach introduces several innovative ideas such as applying several new
neighborhood operators that rely on min-conflicts, destroy-repair, and nearest
neighbors heuristics for delivery and installation of machines (DIM) problem.
The proposed components operate within the framework of Iterated Local
Search (ILS) algorithm (algorithm 1).

ILS framework includes four main components: initial solution, embedded
local search, acceptance criteria and perturbation. In this section we describe
our approach in details.

3.1 Solution representation

Solution candidates are represented using a data structure that includes several
entities: days, vehicles, vehicle trips and routes, delivery requests, technicians,
technician routes and installation requests. Since the delivery of the machines
is done separately from the installation of the machines, then we refer to them
as delivery requests and installation requests.

These entities are organized in a hierarchical way so that they reflect the
relationship between each of them. A solution contains a vector of days and
each day has two lists: the vehicle routes and technician routes. The vehicle
routes contain the list of delivery requests assigned to a vehicle, including the
returns of the vehicle to the depot during the day. We use the concept of the
trip which represents a part of the route that starts and ends at the depot, to
allow the trips to be assigned to different vehicles or even different days. The
technician routes contain the installation requests. This approach is known in
the literature as ’cluster first-route second’ paradigm, where first we create the
groups of the request that are assigned to days and vehicles (cluster), and then
every cluster is treated as a TSP problem. This hierarchical decomposition
into subproblems was proposed by several authors such as [5], [4] and [19]. In
the case of our problem, we can perform another decomposition by dividing
the deliveries and installation schedules, because they can be treated as two
dependent VRP problems.
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Algorithm 1 ILS for DIM problem
s← InitialSolution()
s′′ ← s
gap← 0
repeat

s1 ←MoveTrip(s) or
s1 ← SwapTrips(s)
Through roulette wheel set order of :
s2 ← RemoveInsertDeliveriesStack(s1)
s3 ← RemoveInsertInstallationsStack(s2)
s4 ← RegionGroupingNN(s3)
s5 ← LoopSwap(s4)
s6 ← SwapInstallations(s5)
s← s6
if (s < s′′) then

s′′ ← s
gap← 0

else
gap← gap + 1
if (gap ≥ k) then

gap← 0
Intensify search :
s7 ← ReInsertDeliveriesSerial(s)
s8 ← ReInsertInstallationsSerial(s7)
s9 ← BestSwapWithNNDays(s8)
s10 ← BestSwapWithNNDaysInst(s9)
s← s10
if (s < s′′) then

s′′ ← s
end if
Perturbate s :
sp1 ← PerturbSwapTrip(s)
sp2 ← PerturbReInsertDeliveriesStack(sp1)
s← sp2

end if
end if

until timeExpired

3.2 Initial solution

After the empty solution is populated with empty routes for each technician,
we start the generation of an initial solution by adding the installations in
the first feasible position in available technician routes in the given order of
technicians and requests. If no feasible position is found for a request, then
we perform backtracking by removing the previous requests and inserting the
current one (this approach has been successful for all the instances we exper-
imented with). In the next step, we add the deliveries in the same way, by
adding each of them in the first available truck. The insertion of installations
is more critical because of the hard constraints such as technician skills, tech-
nician days-off, a limited number of visits per day, and limited daily distance.
This is not the case for deliveries, because the number of trucks is not limited.
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It is worth noting that in this phase we only take care of the feasibility of the
solution.

3.3 Local search and neighborhood structures

Local search is based on several neighborhood structures and is conducted in
two stages. The first one is executed during every cycle of the local search.
The second stage contains other operators and they are executed only after
a specific number of cycles of local search don’t find a better solution. The
operators from the first stage are faster compared to those from the second
stage, thus they are given more time as long as they improve the solution.
After the first stage fails to find improvement for a certain number of cycles,
then the algorithm calls the operators from the second stage.

3.3.1 First stage of local search

The first stage contains these operators:

– MoveTrip,
– SwapTrips,
– ReInsertDeliverStack and ReInsertInstallStack,
– RegionGroupingNN,
– LoopSwap,
– SwapInstallations.

The order of the execution of operators is determined in a probabilistic
manner, i.e. in each iteration, a new order of operators is calculated based on
probabilities that are determined by an algorithm configurator (we will give
more information in the section about experimenting).

MoveTrip - moves a trip from one truck to another within a permitted
time window. It uses the idea of min-conflicts heuristic ([13]) to generate the
neighborhood in the way that all the trips from a day are treated as variables
that are in conflict for a better allocation in one of the available trucks. This
neighborhood operator is expected to improve the solution by decreasing the
number of trucks or truck days and indirectly changing the configuration of
the installations. It also may generate solutions with equal cost but a different
structure.

SwapTrips - swaps two trips from different trucks. It also uses min-conflicts
heuristic to generate the neighborhood by treating all the possible pairs of trips
as variables and finding the best swapping pair. SwapTrips and MoveTrip are
executed alternately, i.e. the former is executed in current loop and the latter
in the next. These operators are very efficient when it comes to decreasing the
number of vehicles because they treat the problem as a bin packing problem,
where the vehicles and their trips are treated as bins and items respectively.
In order to evaluate the role of these neighborhood operators, we ran our
algorithm with and without operators MoveTrip and SwapTrips, with a set
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of instances comprised of 15 instances from the early set (E01 to E15) and 9
from the late set (L01 to L09). The algorithm was run for each instance, five
times in each mode for 500 seconds. We measured the relative improvement
of the average costs for each instance. The results are depicted in figure 1.
As the chart shows, when the algorithm uses MoveTrip and SwapTrips, it
generates better solutions for most of the instances. For example, we have an
improvement ratio of over 8% for the problem instance L09.

The pseudocode of an operator that uses min-conflicts heuristic is given in
the algorithm 2. In this procedure, we have an outer loop that is executed as
long as there are global improvements. Inside the outer loop, we first set the
variable BestLocalCost to infinity. Then we start a loop that performs the
moves for as long as there is an improvement compared to BestLocalCost. At
the end of the inner loop, we check if the resulting solution s is better than
IncumbentSolution. If we have a global improvement we repeat the outer
loop. As it can be noticed, the inner loop will always execute at least two
times, because first, we compare the Cost1 against ∞. In this way, the first
move may result in a worse solution, and in the next cycles only improving
moves are accepted. The method SelectAMove selects a move depending on
the operator, while the method EvaluateMove(s, Move) returns the cost of
solution s if Move is executed. In the case of MoveTrip and SwapTrips the
method SelectAMove selects a trip to move or a pair of trips to be swapped
respectively.

Algorithm 2 Procedure Min-Conflicts
s← CopyOf(IncumbentSolution)
repeat

LocalImprovement← false
BestLocalCost←∞
repeat

Move← SelectAMove(s)
Cost1← EvaluateMove(s,Move)
if Cost1 < BestLocalCost then

ExecuteMove(s,Move)
LocalImprovement← true
BestLocalCost← Cost1

else
LocalImprovement← false

end if
until LocalImprovement = false
if s.Cost < IncumbentSolution.Cost then

IncumbentSolution← CopyOf(s)
GlobalImprovement← true

else
GlobalImprovement← false

end if
until GlobalImprovement = false

ReInsertDeliverStack and ReInsertInstallStack - use destroy and repair
heuristic and are similar except for the fact that the former starts destroy-
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Fig. 1 The ratio between with and without MoveTrip and SwapTrips

repair on deliveries and the latter starts on installations. We implement several
strategies for the destroy part and they are described later in this section. It
is worth noting that when we select a request for removal, we remove both the
delivery and installation from the schedule. Reinsertion is done in a greedy
way for each pair of the delivery and installation, by finding the best positions
in the entire feasible time window. This increases the search space because
we now consider the best insertion for both the delivery and installation. We
have experimented with the order of the insertion, but the procedure was very
slow and it did not improve the results significantly. Insertion of deliveries and
installations is committed in the order they are removed from the schedule.

RegionGroupingNN - performs removal and insertion of requests by select-
ing a list of Nearest Neighbors. After a set of requests are selected, they are
grouped in a new trip that is assigned to a vehicle. This strategy has the poten-
tial to improve the solution because it removes from the schedule the requests
that are assigned to different trips and regroups them in an optimized trip.

The three operators mentioned previously are based on the idea of different
heuristics for destroy and repair, an approach that has been used by [20], [16]
and [18]. This operator implements the min-conflicts heuristic in the same way
as algorithm 2.

LoopSwap - performs a sequential swap of requests (nodes) noted as ri and
their positions pi, i ∈ {1, ..., l}, where request r1 is moved from position p1 to
p2, r2 to p3, . . . , rl to p1, creating a closed cycle of swapping. This operator
affects only deliveries from a certain day. The idea of this operator comes from
the classical move called Ejection Chain which was proposed by authors in
[17]. The potential of this move relies on the fact that while an improving
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single swap of two nodes becomes less likely to happen, increasing the number
of swaps in a move increases the possibility to find improvements.

SwapInstallations - swaps two installation requests. The neighborhood is
generated so that the first request is selected randomly and then the best
swap with all possible installations is executed. In order to extend the selected
neighborhood, we also remove the delivery part of the request. The proce-
dure is executed as long as there are improvements and its main target is the
subproblem regarding the installations and technicians.

3.3.2 Second stage of local search

The second stage of local search is executed after a parameterized (k) gap of
iterations of the first stage without improvement and it uses these operators:

– ReInsertDeliverSerial and ReInsertInstallSerial
– BestSwapWithNNDays and BestSwapWithNNDaysInst

ReInsertDeliverSerial and ReInsertInstallSerial - take an input list of re-
quests (delivery and installation) and then relocate each request, including
the delivery and installation. This operator, in fact, performs a series of relo-
cations, where the evaluation of the move is done only after all the requests
are relocated. The idea behind this is to accept temporarily worse solutions in
order to move to more promising search space regions.

BestSwapWithNNDays and BestSwapWithNNDaysInst - These two opera-
tors search for the best pair of requests to swap, considering the complete set
of requests assigned on a certain day. This procedure is repeated for as long as
it finds improvements. Since this generated neighborhood is relatively large,
we put these operators in the second stage of local search, which is executed
only after the first stage cannot make improvements for a given number of
cycles.

Destroy - Remove Heuristics - As mentioned previously, several operators
use a method that selects a set of requests for removal so that different heuris-
tics for insertion are used afterward. The simplest way is to select a set of
requests from a random day, a random truck, a random trip, or a random
technician, depending on the number of requests. The idea behind this is to
destroy a particular region of the solution. Another approach is to select ran-
domly a request and then appending the request with the nearest location
and with overlapping time windows. In this way, we select a set of requests
that have a higher probability to be arranged in a single trip or assigned to
a day or truck. Another way to select a set of requests is to find the requests
whose partial cost in the total solution cost is highest. This can be done using
a function P (s, r) = E(s) − E′(s, r) that calculates the difference of current
evaluation E(s) of a solution s, and the cost when the request r is removed
from the solution E′(s, r). We refer to this heuristic as RemoveWorst.
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3.4 Acceptance criteria

In our approach, we accept only better solutions. This logic is implemented
inside the min-conflicts algorithm which is used by the mentioned operators.

3.5 Perturbation

Perturbation is implemented through two moves: PerturbSwapTrip and Per-
turbReInsertDeliverStack. They are the same operators as SwapTrip and ReIn-
sertDeliverStack respectively, but modified to accept solution of a worse qual-
ity. Perturbation is executed with a parameterized (k) gap of iterations, i.e. for
successive k iterations no perturbation takes place. We compensate sparse per-
turbations with the application of several perturbations in a row and selecting
the best current solution as the incumbent solution for the next iteration.

3.6 Parameter tuning

Our algorithm contains a set of operators that are executed in a certain order,
and this order appeared to be important. While performing experiments we
noticed that for different instances, different orders of operators gave different
results. For this reason, we used a method based on roulette wheel to deter-
mine the order of operators for each cycle, namely the operators: ReInsert-
DeliverStack, ReInsertInstallStack, RegionGroupingNN, LoopSwap and Swap-
Installations (respectively O1, ..., O5). The roulette wheel system takes five
parameters pi, i ∈ [1, 5],

∑
pi = 1 as input and produces an order of oper-

ators. Each parameter pi is the probability that operator Oi is selected as
j-th operator for j ∈ [1, 5]. For example, if all the parameters have the same
value, pi = 0.2, i ∈ [1, 5], then the operators will have the same probability
to be chosen at each step in the sequence, which means that all the possible
permutations of sequences will have the same probability to be chosen. Or, if
parameter p1 = 1, pi = 0, i ∈ [2, 5], then the operator O1 will always be the
first one in the sequence, and the four remaining operators will be chosen as
the next in the sequence with the same probability. We used the SMAC tool
([9,12]) to determine the best configuration of parameters for our algorithm.
The SMAC tool performs intensive experiments using one set of training in-
stances, and one set of testing instances to find the optimal values for each
parameter. We ran SMAC tool with these parameters:

– Total time limit was set to 2 days,
– Maximum runtime for instance: 500 seconds
– Training Instances: 8 instances chosen randomly from ’Early’ and ’Hidden’

sets
– Testing Instances: 27 instances chosen randomly from ’Early’ and ’Hidden’

sets
– The list of parameters to be tuned: pi, i ∈ [1, 4], (since p5 = 1−

∑4
i=1 pi)
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– The possible values for parameters:

{0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8}

The execution of SMAC tool with this setup resulted in parameter settings as
shown in table 1. From the table, we see that the operator O4 (SwapInstalla-
tions) should be selected as the first parameter in sequence 40% of the time.
Operators O1, O2, O5 have equal probability to be selected, and that the O3

will always be the last operator in sequence.

Table 1 Parameter setting found by SMAC

Parameter Value

p1 0.2
p2 0.2
p3 0
p4 0.4
p5 0.2

4 Computational results

We compared the results of our approach with the results submitted in the
challenge website by all the participating teams. In the all-time-best chal-
lenge took part 13 teams who submitted their solutions for 25 instances. Eight
teams, including our team, were selected for the final phase with the restricted
resources. The organizers of the challenge had made available three sets with
25 instances each:

– Early set: 25 instances for all-time-best mode
– Late set: 25 instances used to train the algorithm for restricted resources

mode
– Hidden set: 25 instances that were used in restricted resources mode. This

set was made available after the finalists for the second stage were chosen
and after the submission of solvers was done.

For both challenges, the participants were allowed to use external state of the
art solvers such as: FICO 4, GUROBI 5 or CPLEX 6

4.1 All-time-best challenge mode

At this stage of the challenge, all the participating teams were able to submit
their solutions for each instance from the Early set, and the results were ranked

4 https://community.fico.com/s/academic-programs
5 http://www.gurobi.com/academia/academia-center
6 http://ibm.biz/AI_CPLEX128
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for each instance. Since at this stage there was no limitation regarding the run
time, the participating teams only submitted their best solution. The challenge
website 7 reported the best solutions from all the participating teams for each
instance from the Early set. From the table 2 we can see the best result for
each instance and the results of our approach. The column Ratio expresses
the relative difference of the cost of our approach compared to the best result,
and the Rank column shows the ranking of our algorithm (out of 13 teams)
for each instance. We can see that we reached the second place for the first
instance, the third place for 6 instances, the fourth place for 13 instances, the
fifth place for 4 instances and sixth place for one instance. For 7 instances
the ratio is less than 1 percent, which shows that the results of our solver
are very close to the best results. A more detailed comparison of all-time-best

Table 2 Best solutions submitted by participants for All-Time-Best challenge

Instance Best Our Approach Ratio Rank
Early01 3,487,969,810 3,487,996,910 0.0008% 2
Early02 11,149,038,115 11,225,768,410 0.6882% 5
Early03 179,700,885 184,117,395 2.4577% 3
Early04 284,205,965 289,436,220 1.8403% 3
Early05 2,223,814,105 2,479,106,500 11.4799% 4
Early06 24,160,989,040 24,732,913,745 2.3671% 3
Early07 45,815,700 45,853,150 0.0817% 3
Early08 109,798,470 110,016,310 0.1984% 3
Early09 18,075,485 19,762,065 9.3308% 4
Early10 18,500,638,020 18,761,510,110 1.4101% 5
Early11 28,549,460 31,781,875 11.3222% 4
Early12 23,933,097,895 24,447,956,620 2.1512% 5
Early13 582,708,670 584,976,550 0.3892% 4
Early14 94,780,375 99,699,795 5.1903% 4
Early15 1,772,831,110 1,784,630,020 0.6655% 5
Early16 3,287,392,325 3,446,044,045 4.8261% 4
Early17 3,018,108,020 3,035,277,510 0.5689% 6
Early18 5,129,752,375 5,405,790,030 5.3811% 4
Early19 9,290,203 9,457,608 1.8020% 3
Early20 4,764,640 5,296,100 11.1543% 4
Early21 1,292,914,150 1,360,412,960 5.2207% 4
Early22 203,485,635 217,759,862 7.0149% 4
Early23 55,207,660 58,177,435 5.3793% 4
Early24 17,337,730 17,960,220 3.5904% 4
Early25 66,769,325 71,241,680 6.6982% 4

VeRoLog Solver Challenge top solvers results is given in table 3. For each
solver/team an each instance the relative gap to to the best is presented. The
first column represents the instance, the second shows the number of requests,
and the rest of columns show the results of five best teams including our team
(last column: AAVK). It can be seen that difference of results for most of the
instances among solvers is very narrow.

7 https://verolog2019.ortec.com/
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Table 3 Comparison of All-time-best VeRoLog Solver Challenge top solvers results

Inst. n MJG UOS TCS COKA AAVK
E01 150 0.0000 0.0008 0.0009 0.0096 0.0008
E02 300 0.0000 0.1086 0.4372 0.5217 0.6882
E03 450 0.0000 0.3570 4.2765 3.7151 2.4577
E04 600 0.0000 0.7426 2.4175 3.8037 1.8403
E05 750 0.0000 1.0570 7.2300 20.2542 11.4799
E06 900 0.0000 0.6966 3.6447 6.9432 2.3671
E07 150 0.0000 0.0159 0.5373 2.4136 0.0817
E08 300 0.0000 0.0083 0.3387 9.8424 0.1984
E09 450 0.0000 0.7916 5.1190 22.8997 9.3308
E10 600 0.0000 0.0822 1.7774 0.2722 1.4101
E11 750 0.0000 1.7460 3.0933 76.2355 11.3222
E12 900 0.0000 0.8513 2.3508 1.4309 2.1512
E13 150 0.0000 0.0410 0.7328 0.3682 0.3892
E14 300 0.0000 0.4298 4.6534 8.7505 5.1903
E15 450 0.0000 0.0704 0.1740 2.9431 0.6655
E16 600 0.0000 0.8654 2.5741 37.7519 4.8261
E17 750 0.0000 0.1128 0.3475 0.2998 0.5689
E18 900 0.0000 1.0690 3.3212 9.5738 5.3811
E19 150 0.0000 0.2566 1.9767 42.7723 1.8020
E20 300 0.7238 0.0000 11.0304 111.3894 11.1543
E21 450 0.0000 0.7025 3.3241 51.1948 5.2207
E22 600 0.0000 0.6228 3.1012 23.3063 7.0149
E23 750 0.0000 1.9225 2.1815 17.7000 5.3793
E24 900 0.0000 2.2040 2.3669 45.7606 3.5904
E25 150 0.0000 0.4744 4.9185 7.0527 6.6982

4.2 Restricted resources challenge

The late set of 25 instances was used for the second stage of the challenge.
Participants had to submit the algorithm and the solution for each instance
from this set. Then the organizers ran the solver for these instances in their
servers and selected a limited number of best performing teams. Solvers from
this short list then were used with the hidden set of instances to further de-
termine the complete ranking of submitted solvers. From 9 runs, the best two
and worst two solutions were dropped, and the remaining 5 were used to de-
termine the average and standard deviation. Table 4 shows our results for each
instance, including the best cost, average cost, and standard deviation.

For each team, the organizers calculated the rank per instance, and then
the final ranking was determined as average of all ranks. The table 5 shows the
results of the winning team, and the relative results from fourth, fifth and our
solver (teams: orlab, TCS and AAVK). From this table we can see that our
solver provided better results than fourth place for seven problem instances.
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Table 4 The results of our approach for the hidden set in the restricted resources challenge

Instance Best Average StDev
H01 68,049,230 68,497,477 502,829
H02 1,470,177,245 1,654,579,976 164,820,353
H03 1,388,162,220 1,394,947,955 5,454,085
H04 6,053,945 6,122,060 42,006
H05 4,687,014,190 4,946,153,397 207,877,012
H06 33,537,475 33,642,695 62,003
H07 128,584,875 138,686,310 6,575,414
H08 743,077,790 750,319,371 4,230,922
H09 2,925,297,281 3,087,641,280 120,454,552
H10 47,813,445 49,105,137 848,275
H11 5,050,880,606 5,176,963,402 98,658,731
H12 3,082,704,895 3,095,575,436 8,427,309
H13 5,341,187,251 5,368,906,565 16,223,058
H14 1,394,884,865 1,403,511,603 5,094,711
H15 166,559,140 167,109,473 410,510
H16 61,626,085 63,624,954 1,218,645
H17 27,870,689,964 27,950,302,615 51,793,696
H18 54,778,115 55,313,427 290,138
H19 4,425,251,625 4,450,177,592 20,478,291
H20 208,729,450 231,061,473 14,678,813
H21 38,119,685 38,845,432 477,952
H22 7,473,115 7,575,488 96,316
H23 22,946,775,355 23,021,877,311 48,690,845
H24 32,129,246,375 32,216,184,262 74,165,994
H25 817,352,060 988,807,257 118,314,588

Table 5 Comparison of results in restricted resources challenge

Inst. UOS orlab TCS AAVK
H01 67,347,510 1.757 1.963 1.708
H02 884,328,838 46.944 9.308 87.100
H03 1,356,206,683 1.245 5.431 2.857
H04 5,470,823 17.165 9.190 11.904
H05 2,438,943,861 46.875 18.939 102.799
H06 33,122,942 0.565 2.041 1.569
H07 102,289,614 29.817 7.889 35.582
H08 729,462,821 1.043 7.975 2.859
H09 1,713,909,634 50.785 18.646 80.152
H10 31,615,173 36.361 14.808 55.321
H11 4,143,464,703 47.843 10.383 24.943
H12 2,988,919,325 1.398 6.547 3.568
H13 5,239,090,235 1.164 3.510 2.478
H14 1,380,531,069 0.843 4.536 1.665
H15 163,861,015 1.025 3.069 1.982
H16 53,561,471 33.553 10.688 18.789
H17 27,322,051,463 0.744 3.341 2.299
H18 53,040,623 7.058 3.951 4.285
H19 4,379,503,211 0.402 2.368 1.614
H20 127,117,759 31.932 11.306 81.770
H21 33,217,241 42.250 8.522 16.944
H22 6,750,354 16.978 3.996 12.224
H23 22,368,503,381 1.233 5.690 2.921
H24 31,373,781,566 0.577 4.962 2.685
H25 549,854,756 23.468 13.028 79.831
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5 Conclusions and Future Work

In this work, we presented a new approach for Vehicle Routing and Schedul-
ing with Deliveries and Installation of Machines. Our algorithm includes min-
conflicts heuristic, nearest neighbors, and destroy and repair heuristics in the
iterated local search framework. Several neighborhood operators are evaluated
and additionally, we introduced two new neighborhood operators. The exper-
iments showed that the use of new neighborhoods improved the results for
most instances. Overall our approach has been able to provide good solutions
for a complex problem that includes scheduling and routing.

We participated in the VeRoLog Solver Challenge 2019 where organiz-
ers introduced three sets of problem instances for two different experimental
settings: all-time-best and restricted resources challenge. Thirteen teams par-
ticipated in all-time-best challenge, and eight of them were qualified for the
restricted resources challenge, including our team. The approach we proposed
provided promising results for instances that were used in the competition. In
the future, we plan to extend our metaheuristic approach and investigate its
hybridization with exact methods.
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Effective Pruning Heuristics for the Fixed Route
Dial-a-Ride Problem
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Abstract The fixed route dial-a-ride problem (FRDARP) is a variant of the
famous dial-a-ride problem, in which all the requests are chosen between ter-
minals that are located along a fixed route. A reduction to the shortest path
problem has been proposed for finding an FRDARP optimal solution. How-
ever, the basic graph construction ends up with a huge graph, which makes
the reduction impractical due to its memory consumption. To this end, we
propose several pruning heuristics that enable us to considerably reduce the
size of the graph through its dynamic construction. Our experiments show that
each of the proposed heuristics on its own improves the practical solvability of
FRDARP. Moreover, using them together is considerably more efficient than
any single heuristic.
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1 Introduction

Dial-a ride is a flexible demand responsive transportation solution, in which
a fleet of vehicles fulfills a set of transport requests [9,2]. The flexibility is
usually in both the adjustable departure and pick-up times, as well as in the
vehicle routes. A usual customer request in all the variants of the Dial-a-Ride
Problem (DARP) contains a pick-up location, a destination station, and a
desired pick-up or arrival time. The scheduler groups customers into specific
vehicles, and determines the vehicle routes and timetable. The objective func-
tion is usually related to minimizing the solution cost, and may also include
the aim to increase customer satisfaction. The problem of route determination
in DARP makes the problem hard. Vehicle routing problems, for example the
traveling salesman problem, are known to be NP-hard [5].

In a previous work, we have presented a DARP transportation solution
that neutralizes the difficulty in finding the vehicle routes by determining the
route in advance [7]. The customers can be picked-up from stations that are
located along a known route. We termed this DARP variant a Fixed Route
DARP (FRDARP). With a fixed route, the remaining problem is of grouping
customers together and scheduling the timetable. The DARP solutions, and
in particular the solution we offer, are suitable for a variety of transporta-
tion needs, including dedicated solutions for low-populated areas, and also for
customers with special needs, such as children or elderly [2,4].

In the FRDARP problem, each customer requests to be transported be-
tween two terminals along the fixed route, at requested times. There are two
types of requests, called s-type and r-type. S-type requests have a deadline.
An s-type customer who requested to leave at a certain time cannot leave
later than that time, but could leave earlier. In the latter case, the customer
will reach the destination sooner than ideally wanted. R-type requests have
a release time. An r-type customer who requested to leave at a certain time
cannot leave before the requested time, but can leave at a later time. The
(positive) difference between the requested time and the real departure time
is called the waiting time of the passenger. Naturally, the passengers expect it
to be as minimal as possible. The aim in the presented FRDARP is to mini-
mize the sum of all the waiting times, for a given operational cost. The cost
is determined by the number of times a vehicle leaves the depot for its round
trip. The scheduler receives as input the requests, the vehicles’ working hours,
and the number of round transports. She is then expected to find a schedule
that will increase customer satisfaction by minimizing the total waiting time.

In [7] we have presented a polynomial algorithm to solve the FRDARP by
a reduction to the shortest path problem [8]. Based on the problem input, we
dynamically construct a graph. A shortest weighted path in this graph, which
starts at a source node and ends at a goal node, corresponds to an optimal
schedule. In Section 2 we fully describe the FRDARP and the reduction.

Though the presented method for solving the FRDARP is polynomial, its
implementation involves construction of huge graphs. As elaborated in Sec-
tion 3, this makes it difficult to find an optimal solution when the number
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of requests becomes large. The main contribution of this work is in obtaining
heuristic algorithms for improving the implementation of the solution method.
Using these heuristics considerably reduces the graph size, without compro-
mising the optimality of the solution. Improvement is done by setting pruning
rules that avoid creating duplicate representations of transports, or pruning
rules that do not develop an arc, when it is clear that it will not participate in
an optimal path. In Section 4 we present the pruning heuristics. Section 5 is
dedicated to experiments showing the improvement that is obtained by using
these heuristics.

2 FRDARP: the model and its relation to the shortest path
problem

2.1 Problem input

The problem input consists of:

– A vehicle fleet of size M . Vehicle m has capacity Cm (m = 1, 2, . . . ,M). It
starts working at time am and finishes working at time bm.

– A circular route with L terminals, including the depot. In each round,
which is also termed transport, a vehicle starts at a depot A0, goes through
terminals A1, A2, . . . , AL−1 in this order, and finally returns back to the
depot, which is also denoted AL. The ride time from Ai to Aj is denoted
Dij . The total transport time is D = D0L.

– A declared number of transports, which is denoted K. The cost of a trans-
port is assumed to be vehicle-independent.

– Ride requests. A request is determined by its type, either s-type or r-type, a
pick-up terminal Ai, a destination terminal Aj , and a desired pick-up time,
which is denoted sij or rij , for s-type and r-type requests, respectively. The
total number of requests is called N .

The ride requests are collected into sets. The set of all the s-type requests
from terminal Ai to terminal Aj is denoted Sij . The size of the set is denoted

N ij
S = |Sij |. An element sij ∈ Sij has a value, which is the desired pick-up time

of this request. We also define a normalized value s̄ij = sij −D0i; in order to
pick a customer from Ai at time sij the vehicle should depart from the depot
at time s̄ij . The normalized values form the set S̄ij . Note that the elements
in the described sets are the requests; two different requests are considered as
two different elements, even when they have the same value. The elements of
each set are indexed according to their value in a non-increasing order, e.g.,
if Sij = {sij1 , s

ij
2 , . . . , s

ij

Nij
S

} then sij1 ≤ sij2 ≤ · · · ≤ sij
Nij

S

. The letter l is usually

used for the index of an s-type request: sijl . We similarly define Rij , R̄ij , N ij
R ,

and the indexed elements rijh and r̄ijh , with h = 1, 2, . . . , N ij
R . Finally, we define

the sets R = ∪i,jRij , S = ∪i,jSij , and Q = S ∪R.
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2.2 A feasible solution for FRDARP

An FRDARP solution S is a triplet (P,V, T ), where:

– P = (P1, P2, . . . , PK) is a partition of the set of Q into K disjoint sets.
The partition part Pi represents the requests that are fulfilled by the ith
transport. For simplicity, a partition part is also called a transport.

– V = (v1, v2, . . . , vK) is a list of vehicle indices. Each vehicle is numbered
from 1 to M and, according to V, the ith transport is operated by vehicle
number vi.

– T = (t1, t2, . . . , tK) is a list of departure times. The ith transport departs
from A0 at ti.

A solution S = (P,V, T ) is feasible if it satisfies the following capacity,
partitioning, and time constraints:

1. Capacity constraint: The number of passengers on vehicle vi that operates
transport Pi, at any part of the ride, cannot exceed Cvi , the vehicle’s capac-
ity. Note that |Pi|, the total number of passengers that share a transport,
may be larger than Cvi because passengers are using only a part of the
circular route.

2. SR constraint: A request s̄ij can share a ride with a request r̄i
′j′ only

if r̄i
′j′ ≤ s̄ij . This leads to the following partitioning constraint, for a

mixed transport, i.e., one that contains both s-type and r-type requests.
Consider a mixed transport Pi. Denote the latest normalized r-type request
in Pi by rlast = maxr̄∈Pi

{r̄}, and the earliest s-type normalized request by
sfirst = mins̄∈Pi

{s̄}. The transport is feasible only if rlast ≤ sfirst.
3. Time constraints: The departure time ti of a feasible transport Pi must

satisfy rlast ≤ ti ≤ sfirst. An additional time constraint regards the work-
ing hours of the vehicle, i.e., avi ≤ ti ≤ bvi −D. Another time constraint
regards two transports that are operated by the same vehicle. If vi = vj
(with i 6= j), then the respective departure times must satisfy |ti− tj | ≥ D.

In the next section we define the objective function and discuss properties
of an optimal solution. We close this section by an example.

Example 1 Consider an FRDARP problem with M = 2 vehicles of capacity
C1 = C2 = 2, which are available from a1 = a2 = 8:00 until b1 = b2 = 16:00.
The route consists of L = 3 terminals (including the depot), A0 → A1 →
A2 → A3, and takes 90 minutes to complete. The number of transports is set
to K = 3. The normalized requests are shown in Table 1.

s̄011 s̄021 s̄131 r̄011 r̄121 s̄231 r̄231 s̄132 r̄131 r̄232

8:45 9:45 10:15 10:15 10:30 10:45 12:00 12:45 12:45 13:15

Table 1 Ride requests normalized to the respective departure times from the depot

The transport {s01
1 , s

02
1 , s

13
1 } is an example of a feasible transport. Though

the capacity of the vehicle is two, it can accommodate these three requests,
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because s01
1 frees her seat at terminal A1, which allows s13

1 to join the ride.
This transport should leave the depot not later than 8:45 in order to meet
the deadline requirement of sfirst = s̄01

1 . The transport {s13
1 , s

23
1 , s

13
2 } is not

feasible, as it violates the capacity constraint. The transport {s13
1 , r

01
1 , r12

1 } is
an example of a feasible mixed transport that must depart exactly at 10:15.
The transport {s23

1 , r
23
1 } is an example of a non-feasible transport, because it

violates the SR constraint. An example of a feasible solution is S = (P,V, T ),
with P = ({s01

1 , s
02
1 , s

13
1 , s

23
1 }, {r01

1 , r12
1 , r23

1 , s13
2 }, {r13

1 , r23
2 }), V = {1, 2, 1}, and

T = {8:45, 12:00, 13:15}.

2.3 The objective function and optimal solution properties

A given solution defines for each passenger, either sij or rij , an actual depar-
ture time, denoted adt(qij), where q may be either s or r. The waiting time of
a request is the difference between the desired and the actual departure times:
w(qij) = |qij − adt(qij)|. Our aim is to minimize the sum over the waiting
times of all the passengers, i.e., the objective function is W =

∑
q∈Q w(q).

Definition 1 A solution is called S-ordered if for any two terminals Ai and Aj ,

and any two requests sijl , s
ij
l′ ∈ Sij between these two terminals,

sijl < sijl′ ⇒ adt(sijl ) ≤ adt(sijl′ ).

We similarly define an R-ordered solution.

Definition 2 Given an FRDARP problem, we define the set of optional de-
parture times (ODT) as a set whose elements are the following values:

1. am + nD, with m = 1, 2, . . . ,M .
2. s̄ijl ± nD, with 0 ≤ i < j ≤ L, 1 ≤ l ≤ N ij

S .

3. r̄ijh ± nD, with 0 ≤ i < j ≤ L, 1 ≤ h ≤ N ij
R .

4. bm − (n+ 1)D, with m = 1, 2, . . . ,M .

In all of the above n = 0, 1, . . . , (K − 1). In addition, the value in ODT
must fit the working hours of the vehicles, i.e., they have to be larger than
min1≤m≤M{am}, and smaller than max1≤m≤M{bm} − D. In case one of the
above values is not, it is deleted from the set.

In [7] we have shown that if FRDARP has a feasible solution, then it is
always possible to find an optimal solution with the following properties:

1. It is both S-ordered and R-ordered.
2. For every t ∈ T , t ∈ ODT, i.e, every vehicle leaves the depot in a departure

time, which is an element of ODT.

The solution presented in Example 1 of Section 2.2 is an optimal solution
with these two properties. We have reached it by a reduction of the FRDARP
to the shortest path problem. The reduction procedure, which is based on
these two properties, is described in the following section.
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2.4 Reduction of FRDARP to a shortest path problem

In this section we show how to solve the FRDARP by a reduction to the
problem of finding a shortest path in a directed and weighted graph G. The
reduction has been previously introduced [7], and is inspired by a similar ap-
proach that we applied to an FRDARP with two terminals [8]. The graph is
constructed dynamically, starting from a source node. Two nodes that are con-
nected by an arc correspond to a possible transport. A path from the source
node to one of several goal nodes corresponds to a feasible schedule of the re-
spective FRDARP. The path that has the lowest total weight corresponds to
an optimal schedule. The algorithm is polynomial in the number of requests,
for a given number of terminals, vehicles and transports.

A node in G has (L− 1)(L+ 2) +M coordinates. The first (L− 1)(L+ 2)
coordinates are indices, which are related to the (L−1)(L+2) sets: Rij and Sij ,
where 0 ≤ i < j ≤ L. The other M coordinates are related to the M vehicles.
A node is a sequence (h_l; τ ). The symbol _ is used as a concatenation sign.
h = (hij) is a vector of indices that regard to r-type requests. For example, if
L = 3 then h = (h01, h02, h12, h13, h23). Similarly, l = (lij) is vector of indices
that regard to the s-type requests. Finally, τ = (τ1, τ2, . . . , τM ) is vector of the
availability times of the vehicles. A node (h_l; τ ) indicates that all requests
{rij1 , r

ij
2 , . . . , r

ij
hij} and {sij1 , s

ij
2 , . . . , s

ij
lij}, for the respective i and j, have been

handled, and that the vehicle m (m = 1, 2, . . . ,M) is available for the next
transport at time τm.

An arc connecting (h_l; τ ) and ((h+∆h)_(l+∆l); τ ′) represents a possi-
ble transport shared by {rijhij+1, . . . , r

ij
hij+∆hij} and {sijlij+1, . . . , s

ij
lij+∆lij}, for

all relevant pairs of i and j. The vector τ ′ is different from τ by only one
component, the one that represents the available time of the vehicle, which
operates this transport. The weight of the arc is its cost, i.e., the total waiting
time of the passengers in the transport.

In order to describe the structure and the construction of the graph, we
return to the FRDARP problem of Example 1. The source node in the con-
structed graph is node0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 8:00, 8:00), which means
that none of the requests has been handled yet, and that both vehicles are
available at 8:00. Note that the first five (zero) coordinates are related to
r-type requests, for the following ordered pairs of terminals: (01,02,12,13,23).
This order is kept also for the other five coordinates, which are related to s-
type requests. A goal node is of the form (1, 0, 1, 1, 2, 1, 1, 0, 2, 1; τ∗, τ∗∗), where
τ∗ and τ∗∗ might have any valid value smaller than b1 and b2, respectively.
Arcs and nodes are created, starting from the source node, by two steps: (1)
Choose a vehicle, create all the feasible transports, and represent each by
the index coordinates; (2) Consider all relevant departure times and represent
each possibility by a weighted arc leading to a node (with updated available
time for the operating vehicle). For example, let us choose vehicle v1 as a first
operating vehicle, and consider a transport handling {s01

1 , s02
1 , s13

1 , s
23
1 }. The

representative 10 index coordinates are (0, 0, 0, 0, 0, 1, 1, 0, 1, 1). This transport
should leave the depot between 8:00 to 8:45. If there are more s-type requests
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in the transport (as in this transport), than there is a dilemma. On one hand,
the weight of the arc will be minimum if the transport will leave at the latest
possible time. On the other hand, leaving earlier might be beneficial for the
next considered transports. So, in the case of a majority of s-type requests, we
need to generate nodes with all possible departure times from the ODT set, in
the relevant time slot, which is, in the example, between 8:00 and 8:45. When
the vehicle departs at the latter time, as an example, it will complete its 90
minute route at 10:15. Passengers s02

1 , s13
1 and s23

1 arrive at their destinations
60, 90 and 120 minutes ahead of time, respectively, thus their accumulated
waiting time is 270 minutes. The node in the graph that represents the state
after handling this transport is node1 = (0, 0, 0, 0, 0, 1, 1, 0, 1, 1; 10:15, 8:00)
and the cost of the arc node0 → node1 is 270.

The described generating process (steps 1 and 2 above) continues from
each node, which is connected to the source node by less than K arcs. When
the graph is completed, a path of minimal weighted length from the source
node to any goal node, using at most K arcs, represents an optimal schedule.

We continue the example by considering a possible second transport that
accommodates requests r01

1 , r12
1 , r23

1 and s13
2 using vehicle v2. This transport

should leave the depot between 12:00 and 12:45 in order to meet the re-
spective release and deadline requirements of rlast = r23

1 and sfirst = s13
2 .

In this example, there are more r-type than s-type requests. When this is
the case, there is no dilemma regarding the departure time of the vehicle. It
should depart as early as possible, i.e., at 12:00 and finish at 13:30. Passen-
gers r01

1 and r12
1 will wait at their source terminals for 105 and 90 minutes,

respectively, whereas s13
2 will arrive at her destination 45 minutes ahead of

time. The node that represents the state after handling this ride is node2 =
(1, 0, 1, 0, 1, 1, 1, 0, 2, 1; 10:15, 13:30) and the cost of the arc node1 → node2

is 240.
The careful reader might have noticed that the above described trans-

ports belong to the optimal schedule, which was presented in Section 2.2.
The third transport accommodates the remaining requests r13

1 and r23
2 us-

ing vehicle v1. It will depart from the depot at 13:15 (as early as possi-
ble). The node that represents the state after handling this ride is a goal
node node3 = (1, 0, 1, 1, 2, 1, 1, 0, 2, 1; 14:45, 13:30) and the cost of the arc
node2 → node3 is 30. The presented path node0 → node1 → node2 → node3

is optimal for the FRDARP problem of Example 1 and represents a solution
of cost 540.

3 Graph traversal

The original idea for solving FRDARP was to use the constructed graph of
Section 2.4, and to run on it K iterations of the Bellman-Ford algorithm [1]
in order to find the shortest path [7]. The Bellman-Ford algorithm traverses
the graph similarly to breadth-first search (BFS) [3], and needs to maintain all
the graph nodes in memory at all times.

230

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



Tal Grinshpoun et al.

We have recently attempted to implement the above solution method for a
new transportation solution for the elderly that is based on FRDARP. We have
found out that elderly people living in nursing facilities have transportation
needs of rather limited dispersity, e.g., medical clinic, community center, and
supermarket [4]. Therefore, a transportation solution with a flexible schedule
and a circular route going through these places, starting and ending in the
nursing facility (depot), may very well fit their needs. However, even though
the FRDARPs to be solved were of rather limited size (N ≤ 20 daily requests),
the resulting graphs (on which the Bellman-Ford algorithm should run) turned
out to be very large and the solver ran out of memory.

To this end, we propose to traverse the graph in depth-first search (DFS) [3]
manner by using a classical Branch & Bound procedure. A major advantage
of DFS traversal lies in its memory usage – in DFS there is no need to main-
tain the graph nodes in memory. Moreover, the Branch & Bound procedure
reaches very quickly a first valid solution (not necessarily optimal) and can
consequently use this solution as an initial bound. In order to understand the
merits of holding such a bound, let us, for the sake of clarity, term a path con-
sisting of less than K arcs that has not reached a goal node, as a partial path.
Now, every time the cost of a partial path reaches the bound, the remainder
of this path can be pruned. The bound is updated every time a new better
solution is discovered.

The above basic pruning of the Branch & Bound procedure helps in some
extent to reduce the search space, and serves as a good first step for reducing
the actual graph size. In the next section, we propose several domain-specific
heuristic that considerably enhance the effectiveness of pruning.

4 Pruning heuristics

We propose herein various heuristics for pruning the FRDARP search space.
We separate the heuristics into two types according to their main motif of
pruning – redundancy-removal heuristics and path-removal heuristics. Broadly
speaking, the redundancy-removal heuristics (Sections 4.1 and 4.2) attempt to
a priori identify multiple paths in the graph that ultimately lead to equivalent
solutions, and consequently remove redundant paths. On the other hand, the
path-removal heuristics (Sections 4.3 and 4.4) aim to a priori identify paths
that lead to either infeasible solutions or solutions that are not optimal, and
consequently completely remove them.

4.1 SR redundancy

Consider nodeSR that represents a state in which there are both s-type and
r-type unhandled requests, and the earliest normalized unhandled request is
an s-type request, denoted sfirst. In this situation a single transport cannot
possibly handle all the remaining requests, because sfirst prevents a mixed
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transport with the r-type requests (SR constraint in Section 2.2). The SR re-
dundancy heuristic prevents at nodeSR the development of any arc (transport)
Pr that contains only r-type requests. It can do so, without compromising the
completeness (optimality) of the solution, since developing transport Pr at this
stage leads to redundant paths and can therefore be pruned.

Lemma 1 Developing an arc for transport Pr at nodeSR is redundant.

Proof Denote by Ps any arc (transport) that fulfills the early s-type request
sfirst. It may potentially include additional s-type requests, but not r-type
requests, due to the SR constraint. So clearly any two potential transports Ps
and Pr do not share any mutual requests. We consider two cases according to
the vehicles vs and vr that operate the respective transports Ps and Pr:

– vs = vr: In case the same vehicle operates both Ps and Pr it will have to
perform the Ps transport before Pr. This is because Ps must depart from
the depot not later than sfirst, and the r-type passengers in Pr must all
depart later than sfirst. Consequently, Ps should be developed before Pr.

– vs 6= vr: In case different vehicles operate Ps and Pr then the two transports
have absolutely no effect on each other. Consequently, developing Ps at
nodeSR followed by the development of Pr is exactly the same as developing
Pr at nodeSR followed by the development of Ps.

Considering both cases, it is redundant to develop arc Pr at nodeSR. ut

Corollary 1 The SR redundancy heuristic does not compromise the optimal-
ity of the obtained solution.

To exemplify the SR redundancy heuristic, consider node0, the source node
in Example 1. node0 is an example of nodeSR, since it has unhandled requests
of both types and the earliest is an s-type request (sfirst = s01

1 ). Now consider
two possible transports, Ps = {s01

1 , s
02
1 , s

13
1 , s

23
1 } to be operated by v1 and

Pr = {r01
1 , r12

1 , r23
1 } to be operated by v2. In case we handle ride Ps first we

reach node1 = (0, 0, 0, 0, 0, 1, 1, 0, 1, 1; 10:15, 8:00), and after also handling
ride Pr we reach node2′ = (1, 0, 1, 0, 1, 1, 1, 0, 1, 1; 10:15, 13:30). Conversely, if
we start with ride Pr we reach node1′ = (1, 0, 1, 0, 1, 0, 0, 0, 0, 0; 8:00, 13:30),
and after handling ride Pr we reach exactly the same node2′ with exactly the
same costs as in the first case. This redundancy is illustrated in Figure 1.

4.2 Equal capacity redundancy

Consider nodeEC in the graph and a potential transport P that can be op-
erated by two or more vehicles of equal capacity CEC . Denote by vfirst the
earliest available vehicle of capacity CEC , with ties broken according to the
vehicle index. The equal capacity redundancy heuristic prevents at nodeEC
the development of more than a single arc for transport P with equal capac-
ity vehicles, i.e., it considers at most a single vehicle vfirst of each capacity
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0 2’

1’

1

Fig. 1 SR redundancy illustration

CEC to operate transport P . It can do so, without compromising the com-
pleteness (optimality) of the solution, since developing at this stage additional
arcs of the same transport, operated by vehicles of the same capacity, leads to
redundant paths and can therefore be pruned.

Lemma 2 Developing an arc for transport P operated by a vehicle vother 6=
vfirst with capacity CEC at nodeEC is redundant.

Proof We consider two cases according to the availability times τother and
τfirst of the respective vehicles vother and vfirst:

– τother = τfirst: The redundancy in this case is trivial, because there is ab-
solutely no difference between vehicles vother and vfirst,

– τother > τfirst: The only reason to prefer the later-available vother over

vfirst is to free up vehicle vfirst for operating some other transport P ′ that
needs to departure earlier. However, this possibility would be accounted for
anyway, because when the arc for transport P ′ will be considered it would
be operated by vehicle vfirst (for exactly the same reason that transport P
is operated by vfirst). As a consequence, transport P would be considered
to be operated by vehicle vother later on along that path. Thus, considering
vother for operating transport P at nodeEC is redundant.

According to the way that vfirst was selected it holds that τfirst ≤ τother, thus
considering both above cases, it is redundant to develop an arc operated by
vother for transport P at nodeEC . ut

Corollary 2 The equal capacity redundancy heuristic does not compromise
the optimality of the obtained solution.

To exemplify the equal capacity redundancy heuristic, consider node0, the
source node in Example 1. node0 is an example of nodeEC , since it has two
vehicles of equal capacity (C1 = C2 = 2), both available (τ1 = τ2 = 8:00).
Now consider a possible transport P = {s01

1 , s
02
1 , s

13
1 , s

23
1 } to be operated by

either v1 (vfirst) or v2 (vother). In case vehicle v1 operates transport P we
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reach node1 = (0, 0, 0, 0, 0, 1, 1, 0, 1, 1; 10:15, 8:00). In case vehicle v2 operates
transport P we reach node1′ = (0, 0, 0, 0, 0, 1, 1, 0, 1, 1; 8:00, 10:15). Nodes
node1 and node1′ are clearly equivalent. This redundancy is illustrated in
Figure 2.

0

1’

1

Fig. 2 Equal capacity redundancy illustration

4.3 Infeasible capacity path removal

Consider an arc nodeA → nodeB , which is developed during the DFS traversal.
We assume that the arc represents a feasible transport, i.e., it satisfies the SR
and capacity constraints, and that it is not a goal node. The removal criterion
that is described in this section accounts for arcs that, though feasible, will
necessarily not be a part of a feasible solution due to capacity considerations.

The idea behind the infeasible capacity path removal heuristic is that for
each developed arc there is an upper bound for the number of requests that can
be fulfilled, in between any two consecutive terminals, by the later developed
arcs. The heuristic prevents the development of arcs for which this bound ex-
ceeded. More specifically, the bound is determined by the number of remaining
transports, and by the maximal capacity C∗ = max{C1, C2, . . . , CM}. When
considering an arc nodeA → nodeB during DFS construction, we know the
number of arcs leading to nodeB from the source node in the considered path.
Denote this number by Kpath. This defines the number of remaining trans-

ports K̃ = K −Kpath. The maximal number of requests that can be fulfilled

in any particular segment of the route is restricted by Nmax = K̃ · C∗.
Given a developed arc, we also know the number of remaining requests

that should be fulfilled. Denote the integer coordinates of nodeB by (h_l),
where h = (h01, h02, . . . , hL−1,L) and similarly l = (l01, l02, . . . , lL−1,L). Then
the number of remaining requests from terminal Ai to terminal Aj is given by

Ñ ij = N ij
S +N ij

R−(hij+lij). Finally, the number of remaining requests between

two consecutive terminals Ak and Ak+1 is given by Ñk =
∑k
i=0

∑L
j=k+1 Ñ

ij . If
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the considered arc is part of a feasible path, then it must hold that Ñk ≤ Nmax,
for each k = 0, 1, 2, . . . , L− 1. This proves the following lemma.

Lemma 3 An arc for which max{Ñ0, Ñ1, . . . , ÑL−1} > Nmax can be removed
from the graph that represents the respective FRDARP.

Corollary 3 The infeasible capacity path removal heuristic does not compro-
mise the optimality of the obtained solution.

To exemplify the infeasible capacity path removal heuristic, consider node0,
the source node in Example 1. node0 is an example of nodeA. Now consider
nodeB whose integer coordinates are (0, 0, 0, 0, 0, 1, 1, 0, 1, 0). The arc nodeA →
nodeB represents the transport of {s01

1 , s
02
1 , s

13
1 }. The number of remaining

transports is K̃ = 2 and the maximal capacity is C∗ = 2. Hence, the maximal
number of requests that could be treated in a given route segment is Nmax = 4.
However, among the remaining seven requests, there are five requests that use
the route segment between terminals A2 and A3, i.e., Ñ2 = 5. These are
s23

1 , r
23
1 , s13

2 , r
13
1 , and r23

2 . Since Ñ2 > Nmax this arc can be removed from the
graph.

4.4 A*-based path removal

The A* algorithm [6] is a classical graph traversal algorithm, often used
for minimal path search. The classical A* traverses the graph in a best-first
search [10] manner, which we do not use herein due to its space requirements
(see Section 3). However, we can adopt the node expansion strategy of A* as
an additional pruning heuristic.

When the A* algorithm needs to decide whether to expand a node in
the graph, say nodei, it considers two values – the cost g(nodei) of the path
from node0 (the source node) to nodei, and a heuristic estimate h(nodei) of
the cost of the optimal path from nodei to any goal node. A heuristic h(·)
is called admissible if its estimate is never larger than the real cost of the
optimal path from nodei to a goal. Therefore, when h(·) is admissible, the
sum g(nodei) + h(nodei) can serve as an optimistic view for the potential
of the current partial path going through nodei. When nodei is expanded,
g(nodei) is already known. Consequently, the challenge in achieving efficient
pruning lies in the development of an admissible heuristic h(·) that is both fast
to compute and tight, in the sense that its estimate is as close to the actual
optimal value as possible.

We propose herein a heuristic h(·) that focuses on the set of yet unhan-
dled requests Q̃ ⊆ Q. The main idea is to look at the differences between the
request times in Q̃. The differences between requests correspond to costs that
would definitely be applied in case these requests share the same ride. However,
considering all combinations of unhandled requests, including taking into ac-
count their types and pick-up/destination terminals, is computationally heavy.
Therefore, we completely disregard the request types and pick-up/destination
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terminals, and consider just a sequence of the unhandled ride requests Q̃,
ordered according to their requested times. Relating only to consecutive el-
ements is optimistic, as is required for the admissibility of the heuristic, for
the following reasons. On one hand, such pairs of elements (passengers sharing
a ride) are generally “cheaper” than non-consecutive elements. On the other
hand, they may turn out to be infeasible, due to the disregard of request types
(e.g., SR constraint) and terminals (e.g., capacity constraint).

Input: set of unhandled requests Q̃, number of remaining transports K̃
Output: value of h(·)

1 sort Q̃ according to the request times

2 ∆ = multiset of time differences between consecutive elements in Q̃
3 sort ∆ in reverse order

4 remove the first (highest) K̃ − 1 elements from ∆
5 initialize hval and factor to zero
6 for index = 0 . . . (|∆| − 1) do

7 if index mod 2 · K̃ = 0 then
8 increment factor by 1
9 end

10 increment hval by ∆(index) · factor
11 end
12 return hval

Algorithm 1: Computation of h(·)

The computation of our proposed h(·) is given in Algorithm 1. It starts with
the sorting of Q̃ (line 1). Then, in line 2, a multiset ∆ is generated, consisting
of the request time differences between every pair of consecutive elements in
Q̃. (∆ is a multiset because it may contain several repetitions of the same time
difference.) Next, ∆ is sorted in reverse order (line 3) followed by the removal
of its first (highest) K̃ − 1 elements (line 4). K̃ remaining transports mean
that K̃ − 1 time-request differences can be removed without cost, because
their respective passengers can be separated to different transports. For the
sake of admissibility we remove the most costly K̃ − 1 differences.

Two variables are introduced and initialized in line 5 – hval, the value
of h(·) that needs to be computed, and factor that represents the minimal
number of times a cost difference should be accounted for in the computation
of hval. To understand the concept of factor consider an adt of a ride that is
earlier than the ride time requests of three (s-type) passengers on that ride.
The difference between the adt and the latest of these three request times
will be accounted for three times, once for the cost of each passenger, i.e., the
factor should be 3 in this case. However, the difference between the request
times of the first and second passengers will only be accounted for once for
the cost of the first passenger, i.e., the factor should be 1 in this case.

Now we continue to the main loop (lines 6-11), which visits all the remain-
ing elements of ∆ (after the removal in line 4). In index = 0 and later in every
2 · K̃ iterations the factor increases by 1 (lines 7-8). Consider again the time
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difference between the requests of the first and second passengers from the last
example. It has a factor of 1 because it is in the “border” of the ride (no pas-
senger with a later request than the first). However, there may also be a similar
border for r-type requests of earlier time than adt. Moreover, any remaining
transport of the K̃ can have two such borders. Thus, for sake of admissibility
we consider the maximal number of possible time differences accounted for
before the factor grows. Next, in line 10, each time-difference value in ∆ is
multiplied by the corresponding factor at that time of the computation, be-
fore being added to hval. Naturally, for the optimistic scenario needed herein,
we must consider that the high differences (high costs) are multiplied by low
factor values, and vice versa, and this is indeed achieved by starting with the
highest values in ∆ (recall the reverse ordering in line 3). Finally, in line 12,
the accumulated hval is returned as the output of the computation.

Lemma 4 The h(·) heuristic of Algorithm 1 is admissible.

Proof In Algorithm 1 we relate to the unhandled requests Q̃ without regarding
their types and terminals. By disregarding the terminals, the problem becomes
a simple case of the two-campus transport problem (TCTP) [8]. It has been
proven that there always exists an optimal solution that groups together in a
ride only consecutive request times (according to each type) [8, Theorem 1].
In Q̃ we also disregard the types, so now grouping together only consecutive
request times is definitely optimistic (though probably infeasible). As a conse-
quence, we can relate only to the costs of consecutive ride requests, i.e., their
time differences (∆). A best-case optimal solution may (i) potentially rule-out
the most costly differences, and (ii) repeat as few times as possible the costs
of the remaining costly differences. This is exactly what happens in line 4, and
in the loop of lines 6-11, respectively. Consequently, the returned hval serves
as an optimistic lower bound to the actual cost for the remaining requests Q̃
and transports K̃. ut

Following the admissibility of h(·), the A*-based path removal heuristic
does not expand any nodei for which g(nodei) +h(nodei) ≥ UB, where UB is
the cost of the best solution found so far. The upper bound UB is maintained
as part of the Branch & Bound procedure (Section 3).

Corollary 4 The A*-based path removal heuristic does not compromise the
optimality of the obtained solution.

To exemplify the computation of h(·) in the A*-based path removal heuris-
tic, consider node0, the source node in Example 1. Given that node0 is a source
node, we have Q̃ = Q and K̃ = K = 3. The ride requests Q are already ordered
(line 1) in the presentation of Table 1, so we continue to present in Table 2
the corresponding ∆ and ordered ∆ (lines 2 and 3).

After the execution of line 4, the two (K̃ − 1) highest costs (75 and 60)
are removed from ∆. Their remain 7 elements in ∆ to be considered in the
main loop (lines 6-11). The factor is incremented every six (2 · K̃) iterations,
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∆ 60 30 0 15 15 75 45 0 30

Ordered ∆ 75 60 45 30 30 15 15 0 0

Table 2 ∆ and ordered ∆ in the computation of h(node0)

so only the last element, which is zero anyway, is multiplied by factor = 2.
So the computed hval is (45 + 30 + 30 + 15 + 15 + 0) · 1 + 0 · 2, resulting in
h(node0) = 135. Note that in case this was not a source node, the cost g(node)
of the path until node would have been added for the comparison with the
current UB.

5 Experimental evaluation

We have implemented an FRDARP solver based on Branch & Bound (Sec-
tion 3) and all the presented pruning heuristics (Section 4) in Java. In the
experiments we evaluate six versions of the algorithm – a basic version with-
out any pruning heuristic, four versions that apply a single heuristic each, and
a full version that incorporates all four heuristics. By that we can learn about
the effectiveness of each of the heuristics, and also examine their combined
effect. The experiments were executed on a hardware comprised of an Intel
i7-6820HQ processor and 32GB memory.

In order to evaluate the efficiency of the proposed pruning heuristics we
chose a setting that is based on a transportation solution for elderly people
living in nursing facilities [4], see Section 3. The basic setting includes N = 15
ride requests, M = 2 vehicles of capacity C1 = C2 = 5, which are available
from a1 = a2 = 7:00 until b1 = b2 = 19:00. The route consists of L = 4
terminals (including the depot), and takes 60 minutes to complete. The number
of transports is set to K = 3.

We create 50 instances for each setting in each of the experiments, and
present the mean values of these 50 instances. The instances differ in the ride
requests. For each ride request in an instance we randomly choose its type
(s-type or r-type), its two terminals (pick-up and destination) and its desired
pick-up time (every 15 minutes within the working hours of the vehicles).

Our experiments examine the percentage of problems that can be (opti-
mally) solved within a short period of time, where the timeout is set to one
minute. In each experiment we focus on some parameter in order to observe
its effect.

We begin with the number of ride requests parameter, which varies in the
range 9 ≤ N ≤ 21, while all other parameters remain fixed according to the
basic setting. The results are shown in Figure 3.

Next, we focus on the vehicles’ capacity parameter, which we vary in the
range 3 ≤ C ≤ 7. However, changing only the capacity may result in unsatisfi-
able problems (when C is too small) or in rather easy problems (when C is too
large). To this end, we would like to maintain a balance between the number of
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Fig. 3 Percentage of 1-minute solved problems with varying number of ride requests N

ride requests and the overall capacity (considering both the number of trans-
ports and the vehicles’ capacity), according to the formula N = K · C. Note
that since passengers free up places in intermediate terminals, this initially
tight-looking ratio usually corresponds to satisfiable problems. Thus, in this
experiment, shown in Figure 4, we also accordingly vary the number of ride
requests in the range 9 ≤ N ≤ 21, where the number of transports remains
K = 3 as in the basic setting.
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The last parameter we study is the number of transports, which we vary in
the range 2 ≤ K ≤ 4. Again, we maintain the balanceN = K·C. Consequently,
in this experiment, depicted in Figure 5, we also vary the number of ride
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requests in the range 10 ≤ N ≤ 20, where the vehicles’ capacity remains
C = 5 as in the basic setting.

Out[892]=

● ●

●

■

■

■

◆

◆

◆

▲

▲

▲

▼

▼

▼

○

○

○
2 3 4

0

20

40

60

80

100

Number of Transports

P
er
ce
nt
ag
e
of
S
ol
ve
d
P
ro
bl
em
s
[%

]

● All

■ SR

◆ EC

▲ IC

▼ A
*

○ None

Fig. 5 Percentage of 1-minute solved problems with varying number of transports K

The presented results shed light regarding the performance of the proposed
heuristics. Each of the heuristics on its own improves the practical solvability
of FRDARP, but interestingly their combination is considerably more efficient
than any single heuristic. This phenomenon suggests that the heuristics do
not overlap much and are able to prune different parts of the constructed
graph. This comes as no surprise given that the four heuristics use completely
different ideas that lead their pruning strategies. Further insight regarding
the combined effectiveness of the four heuristics can be gained by observing
the sizes of obtained graphs without and with the heuristics. For example, the
number of developed nodes for instances of the basic setting, which were solved
within the 1-minute timeout, reduced from ∼ 300K to ∼ 5.5K on average.

Out of the four heuristics, the infeasible capacity heuristic performs best
in most settings. It is actually only outperformed by the A*-based heuristic
in rather easy settings (N = 11,N = 13 in Figure 3 and C = 4 in Figure 4).

Turning the spotlight to the A*-based heuristic, its performance seems to
deteriorate as the problems become harder (in terms of number of passengers
or vehicle capacity, see Figures 3 and 4). This suggests that although the
basic idea of the heuristic has potential (as witnessed in its performance in
the easy settings), the value of h(·) for hard instances is not tight enough,
i.e., not close enough to the actual cost. Indeed, in the computation of h(·)
we completely disregard the types and terminals of unhandled ride requests
(Algorithm 1, line 1). The idea was to make the computation fast. However,
for harder problems we may consider performing a more complex and tighter
computation of h(·) that may result in increased overheads, but at the same
time significantly reduce the size of the constructed graph.
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6 Conclusion

The main contribution of this paper is in presenting and investigating pruning
heuristics for the FRDARP model. In Section 2 we have presented the FR-
DARP model, including the reduction to the shortest path problem. A side
contribution of this paper lies in the compactness of this presentation. We
also believe it is more fluent and accessible, and in addition, it includes an
illustrating example, which was missing in the first paper on this subject [7].

Regarding the pruning heuristics, we have presented four heuristics. Two
of the heuristics attempt to identify and remove redundant paths, whereas
the objective of the other two is to rule-out paths that are provably infeasible
or non-optimal. According to our experimental evaluation, all the heuristics
perform well and improve the practical solvability of FRDARP. However, the
most interesting phenomenon is that their combined effort is considerably more
efficient than any single heuristic, probably due to their completely different
pruning strategies.

With the help of these pruning heuristics, the model is now more applicable
for use in real-life problems, as well as in more complex variants of the model.
For example, one can regard adding the option for vehicles to wait at inter-
mediate terminals. There are some real-life scenarios in which such waiting is
acceptable by the passengers, e.g., train connections in major stations. This
option may reduce the value of the objective function, because new scheduling
possibilities arise. For example, a vehicle that previously could not peak an
r-type passenger from an intermediate station, can now wait in order to pick
up this passenger. This can reduce the waiting time of passengers and may
also lead to better vehicle availability. However, the option to wait at inter-
mediate terminals is expected to increase the graph size, because of these new
possibilities. Therefore, pruning heuristics are crucial for the applicability of
such a complex variant.
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Robustness of periodic reoptimization policies for the
dynamic PDPTW

Farzaneh Karami · Wim Vancroonenburg ·
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the date of receipt and acceptance should be inserted later

Abstract In the dynamic pickup and delivery problem with time windows (PDP-
TW), there exists uncertainty concerning the time windows and locations associ-
ated with requests. Periodic reoptimization policies are suitable for dealing with
such uncertainty. The key question is to what extent these policies are robust for
the dynamic PDPTW. We analyze robustness by taking into account both the
reoptimization period and the dynamism degree. We first evaluate the robustness
locally after each reoptimization and then evaluate it globally at the end of the
scheduling horizon. Results indicate that robustness increases both locally and
globally when either the reoptimization period lengthens or the dynamism degree
increases, and vice versa. Finally, we conclude that periodic reoptimization policies
for the dynamic PDPTW handle uncertainty best when the reoptimization period
matches the requests’ urgency.

Keywords Dynamic pickup and delivery with time windows · Periodic
reoptimization policy · Robustness analysis

1 Introduction

How should one handle the inherent uncertainty present in dynamic problems?
This is not a straightforward question to answer given that there is little agreement
concerning how exactly one should even quantify performance in dynamic prob-
lems, let alone how best to maintain high quality solutions under such conditions.
In a problem such as the dynamic pickup and delivery problem with time windows
(PDPTW), uncertainty can arise in many forms: request locations, request time
windows, vehicle availability and so forth. If an approach for the dynamic PDPTW
is able to consistently produce high quality solutions despite these unknowns, then
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it is referred to as robust.

The more uncertainty a method can handle, the more robust it is said to be.
Two possibilities for addressing uncertainty in the dynamic PDPTW are (i) those
which reserve unscheduled vehicles to deal with unforeseen request arrivals and (ii)
reoptimization-based approaches. Despite their widespread use, reservation-based
approaches are inefficient for two reasons. First, surplus vehicles are not profitable
during non-peak periods. Second, if none of the reserved vehicles are located close
to the location(s) associated with unpredictable requests, then it is a waste of
resources to reserve additional vehicles during the peak periods.
As Psaraftis [5] have highlighted, there is usually very little flexibility when it
comes to varying fleet size in reoptimization-based approaches. There is usually
some timespan before the schedules are executed. Consequently, solving the dy-
namic PDPTW as a static scheduling problem using robust optimization affords
greater flexibility in terms of including additional vehicles in order to meet de-
mand.
Dynamism and urgency [7] are two important parameters associated with a dy-
namic PDPTW instance. The dynamism degree corresponds to the frequency with
which requests arrive. Meanwhile, urgency levels convey how quickly those re-
quests must be serviced. The combination of these two parameters represents an
instance’s degree of uncertainty. A thorough understanding of the issues stemming
from the various forms of uncertainty is helpful for solving the PDPTW. This is
especially the case when there is no prior knowledge available concerning request
arrivals, their locations and their time windows.
The time interval associated with reoptimization is what determines optimization
runtime. One possibility is to react to each and every information update, a policy
referred to as reactive reoptimization. Another possibility is to only reoptimize
once a set of predefined criteria is met, a policy referred to as periodic reoptim-
ization. Reactive reoptimization is likely to generate huge computational burdens
when solving large-scale problems and demands more resources than periodic re-
optimization policies to maintain solution quality [3]. On the other hand, the
periodic reoptimization policy introduced by Karami et al. [2] takes urgency levels
into account and defines a buffering time interval between consecutive calls to the
solver. As a result, periodic reoptimization policies are capable of controlling the
amount of time available for reoptimization. Thus, they call for a trade-off between
solution quality and robustness.
Figure 1 illustrates how utilizing a reactive reoptimization policy differs from us-
ing a periodic policy. This example concerns the assignment of two requests to a
single vehicle before noon. The two requests are announced during the workday at
9:35 and 9:40 with their pickup and delivery time windows being [9:35-11:00] and
[9:40-9:50], respectively. Rejecting requests is not permitted. The vehicle traverses
a Manhattan-style grid where each edge requires five minutes of travel time. The
objective is to minimize the sum of travel times, driver overtime, and lateness of
requests. While the best solution the reactive reoptimization policy can achieve
takes 150 minutes, the periodic policy generates a solution of 135 minutes when its
reoptimization period is set to 5 minutes, despite the fact it begins servicing at a
later point in time. If we increase the reoptimization period from 5 to 20 minutes,
the best attainable objective value then becomes 190 minutes. This example simply
demonstrates the potential benefit of a periodic reoptimization policy and the cru-
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cial role of the reoptimization period. Now, however, one crucial question arises:
what reoptimization period will produce high quality solutions that are also robust
with respect to unpredictable request arrivals?

Figure 1: Dynamic PDPTW addressed by one reactive and two periodic reoptim-
ization policies

Two possible metrics for robustness are the solution itself and its quality. In the
former, robustness concerns preserving the assignments constituting a solution.
Meanwhile, the latter metric only considers solution quality, regardless of the num-
ber of changes made to the schedule. Since solutions are frequently updated dur-
ing a periodic reoptimization policy, the solution quality perspective of robustness
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makes most sense. Therefore, for the remainder of this paper, robustness refers to
solution quality robustness.
Investigating a periodic reoptimization policy’s robustness involves exploring the
range of different degrees of uncertainty under which a given dynamic PDPTW
performs ‘well’, ‘as intended’ or ‘as required’. The dynamic PDPTW with request
time windows’ uncertainties has been defined by Srour et al. [6] with the assump-
tion that exact pickup and delivery locations are known while the time windows
are uncertain. Morlok and Chang [4], however, consider request location uncer-
tainty for a transportation system.

Nevertheless, the academic literature lacks a means of quantifying robustness
when it comes to periodic reoptimization policies for the dynamic PDPTW, when
considering uncertainty for both timing (arrivals and time windows) and loca-
tions. This research is dedicated to addressing this issue. We analyze the robust-
ness of periodic reoptimization in the dynamic PDPTW with respect to varying
reoptimization periods and degrees of dynamism. Our experiments are conducted
on generated instances which exhibit a variety of dynamism degrees and urgency
levels.

2 Uncertainty metric

2.1 Urgency and dynamism

A dynamic PDPTW instance [1] is a triple (τ, ε, V ) where τ denotes the scheduling
horizon, V the fleet of vehicles, and where ε consists of all request arrivals. The
time at which a request r becomes known is referred to as its arrival time ar. The
continuity of request arrivals corresponds to the PDPTW’s degree of dynamism,
while urgency is treated as a distinct characteristic and defined as the length of
time from a request’s arrival until the end of either its pickup or delivery time
window. The information regarding both the pickup and delivery tasks’ time win-
dows is available upon request arrival. Given that the pickup should be finished
first, we define urgency based on the pickup time window.

To generate instances with different degrees of dynamism using the generator
provided by van Lon et al. [7] consider 4 := {δ0, δ1, . . . , δ|ε|−2} = {arj −ari | j =
i + 1 ∧ ∀ri, rj ∈ ε}, which represents the sequence of inter-arrival times for re-
quests, where | 4 | := |ε| − 1.

The inter-arrival time required for uniform distribution, in other words 100 percent
dynamism, is τ

|ε| . Based on the definition provided by van Lon et al. [7], dynamism
is measured by

Dy = 1−
∑|4|
i=0 σi∑|4|
i=0 σ̂i

,

for which the numerator is the sum of all deviations of inter-arrival times (σi)
relative to the 100 percent case and where the denominator is the maximum de-
viation for the scenario.
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One possible example sequence of inter-arrival times for requests is4a = {0.1, 1, 0.1,
1, 0.1, 1, 0.1, 1, 0.1}, which corresponds to five small bursts with intervals of 0.1 and
four of 1 unit, as shown in Figure 2(a). By changing this order, another possible
sequence for request inter-arrival times is 4b = {1, 1, 0.1, 0.1, 0.1, 0.1, 0.1, 1, 1},
which has one large burst of request arrivals in the middle and two individual
request arrivals at both the beginning and end, as shown in Figure 2(b). Thus, the
degree of dynamism of Figure 2(a) is 55.5%, whereas that of Figure 2(b) is 35.1%.

(a)

(b)

Figure 2: Two possible examples of request arrival events with five inter-arrival
times of 0.1 and four inter-arrival times of 1 unit.

In order to conduct our computational study we created a set of instances whose
characteristics exhibit a variety of dynamism and urgency combinations. The gen-
erator was employed to produce instances with three different degrees of dynam-
ism (20%, 50% and 90%) and five different levels of urgency (5, 15, 25, 35 and 45
minutes). Five instances were produced for each of the 15 possible combinations,
resulting in a total of 75 instances.

2.2 An uncertainty metric for periodic reoptimization policy

The degree of certainty of a periodic reoptimization policy refers to the proportion
of observed requests it has integrated into the reoptimization at a particular time
t. Let |ε| be the total number of requests for an instance and nt the number of
requests which have arrived before t. The degree of certainty at time t is then
defined as nt

|ε| .

The length of time between two consecutive optimizations is denoted by ET [2].
Meanwhile, the degree of certainty Ci of reoptimization period i ≥ 1 is equal to
Ci−1 + Γi, where C0 = 0 and Γi represents the additional amount of certainty a
periodic reoptimization policy gains during period i, which can be calculated as
follows:

Γi =
niET − n(i−1)ET

|ε|
We define the degree of uncertainty at optimization period i as Ui = 1 − Ci. We
consider instances with a variety of dynamism and urgency configurations in the
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first two hours of the scheduling horizon in Figure 3. The graphs show the un-
certainty degree determined by a periodic reoptimization policy. The scheduling
horizon’s length τ is four hours. Dy and Ur denote each instance’s dynamism
degree and urgency level, respectively. The degree of uncertainty is calculated for
various ETs. One can observe nonlinear variations concerning the uncertainty
degree of instances with lower degrees of dynamism. However, given that the un-
certainty degree increases relative to the reoptimization frequency, one question
logically arises: does solution quality deteriorate as uncertainty increases? And if
the answer to this question is affirmative, then by how much does it deteriorate?
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(i) Dy : 100%, Ur : 45

Figure 3: Uncertainty degrees of periodic reoptimization policy in the first two
hours of the scheduling horizon.

3 Periodic reoptimization policies robustness

In this section we analyze the robustness of the periodic reoptimization policy
proposed by Karami et al. [2] where additional requests are inserted into the
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existing schedule with the objective of minimizing the sum of travel time, vehicle
overtime and request lateness. We employed the iterative scheduling algorithm
introduced by Vancroonenburg et al. [8]. At each iteration, a random request is
eliminated from its associated transporter’s route. This request is then reinserted
into the schedule using the cheapest insertion procedure. If the resulting solution
is better than the current solution, it is accepted. The search stops if a predefined
stopping criterion as a maximum number of non-improvements is met. This study
will compare the periodic policy’s objective values against those of the optimum
static solutions obtained by a MILP, which were generated for both the local and
the global problems.

Robustness metric A challenge present in periodic reoptimization is how to
measure the impact of the degree of uncertainty on an existing schedule, both
locally after each optimization and globally at the end of the scheduling horizon.
There is no metric available for calculating local or global robustness. However,
such a metric is needed to assess the impact of request arrivals on the solution’s
quality. First, consider the solution quality associated with each of the schedul-
ing horizon’s reoptimization periods. Let us then define Lnr as the percentage
difference between the average solution quality across the entire horizon and the
worst quality observed. We also define Gnr as the gap between the objective value
incurred by the periodic reoptimization policy over the entire scheduling horizon
with respect to the optimal objective value over the same period. Therefore, local
and global robustness can be defined as 100-Lnr and 100-Gnr, respectively.

Local robustness Figure 4 provides the local robustness values for instances with
urgency levels of {5, 15, 25, 35 and 45 minutes} and dynamism degrees of {low-20%,
medium-50% and high-90%}. Each node in Figure 4(a) corresponds to the local
robustness for instances with five different urgency levels and identical dynamism
degrees. Similarly, each node in Figure 4(b) corresponds to the local robustness
for instances with three different dynamism degrees and identical urgency levels.
Note that progressing along the x-axis involves the level of urgency decreasing.
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Figure 4: Local robustness of the periodic reoptimization policy.
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Figure 4 shows how better local robustness is obtained for instances which are
highly dynamic or which experience low urgency. The figure also illustrates the
small decrease of 4% in the local robustness value when transitioning from ur-
gency level 35 to 45. This may be attributed to the decreased flexibility of the
scheduling algorithm during the very long reoptimization period when the large
number of buffered requests demands more vehicles to achieve a higher robust-
ness. Meanwhile, lower robustness levels are anticipated as the urgency increases
further. The computational results fully support this prediction, as evidenced by
the lack of a peak on the left-hand side of Figure 4(b). This effect is due to the
existence of scenarios which incorporate queues of highly urgent requests that are
larger than the fleet of available vehicles, which implies less flexibility and thus
less robustness. Non-urgent scenarios with any dynamism degree appear the most
flexible scenarios for the scheduling algorithms to address. This is possibly due to
the balanced number of requests associated with such scenarios, a demand pattern
which does not require a large fleet of vehicles. An average local robustness of 70%
is achieved across all instances.

Global robustness Figure 5 provides the global robustness results and illustrates
how global robustness for all instances remains in the range of 66-78%. Figure
5(b) shows that the global robustness decreases in a nonlinear fashion when the
reoptimization frequency is increased. Nevertheless, global robustness across all
instances is relatively high, averaging 73%.
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Figure 5: Global robustness of the periodic reoptimization policy.

4 Conclusions

This paper evaluated the robustness of a periodic reoptimization policy for the
dynamic PDPTW with regard to varying reoptimization periods and dynamism
degrees. The analysis indicates that robustness increases globally at the end of an
instance’s horizon or locally after each optimization when either the reoptimization
period or the dynamism degree increases.
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Shortening the reoptimization period may increase the frequency of disruptions,
which incurs nervous decision-making without improving the schedule’s quality.
Another way of putting this is that a periodic reoptimization policy’s response may
be perfectly sufficient to deal with the disruptions faced and that rescheduling more
frequently can prove counterproductive, at least from a robustness perspective.
Therefore, the reoptimization frequency should be low enough to ensure a high
degree of robustness. As soon as robustness begins to decrease the reoptimization
frequency must be increased. If this simple rule is applied then the robustness of
a periodic reoptimization policy will increase.
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Abstract We discuss the intermittent traveling salesperson problem (ITSP),
an extension to the well-known traveling salesperson problem. Similar to the
classical problem, the ITSP requires that a tour visits all nodes in the network,
but each node now has a required processing time as well. Furthermore, the
allowable consecutive processing time of a node is limited, which results in the
introduction of waiting time and/or multiple visits. As a result, a valid tour
for the ITSP may no longer constitute a Hamiltonian cycle, but could include
loops as well as use edges multiple times.

We omit assumptions made in earlier work on the ITSP, to allow for a
broader and more realistic discussion of the problem. Specifically, we gener-
alize the underlying model that determines the maximum consecutive node
processing time. The contribution of the research can be summarized as fol-
lows. First, we propose a metaheuristic algorithm for this extended ITSP. We
focus on algorithm components and specifically propose several options for
the decoding procedure from solution representation to an ITSP tour. Second,
we perform computational experiments, to allow for meaningful insights into
each algorithm component’s performance. We generate sufficiently diverse test
instances, to warrant generalizable conclusions.
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1 Introduction

We consider the intermittent traveling salesperson problem (ITSP) as a variant
of the traveling salesperson problem (TSP), in which each node may need to
be visited more than once. Each node has a required processing time, and a
maximum temperature is imposed above which overheating would occur (or,
alternatively, a maximum node capacity would be exceeded). An important
trade-off to be made is whether to wait for a node to cool down sufficiently to
allow for further processing, or to move to another node, process (a part of)
that one, and move back to the first node. Note that there is no restriction
which states that one should go back to an earlier abandoned node as soon as
possible. Depending on among others, the underlying graph structure, it may
prove beneficial to only finish processing some nodes at a much later time.

A major assumption of earlier work by Pham et al. (2020) concerns the
temperature increase and decrease functions. Whereas in earlier work, the node
temperature is considered to increase and decrease in a linear fashion, we now
wish to relax this assumption, and propose generalized temperature increase
and decrease functions (Section 2).

Consider that, while we retain the original naming, specifically regarding
temperature (functions), the ITSP can potentially be applied in many different
fields. Examples are the processing of a metal surface with a laser, in which case
the metal cannot be allowed to overheat, and the delivery of fuel to different
locations, with both a fill and usage rate.

2 Problem definition

2.1 General

An undirected graph G(V,E) can be used to model the ITSP, with V the set
of vertices or nodes (including the depot), and E the edges between the nodes.
Each node i has a required processing time pi (p0 = 0 for the depot) and a
temperature τi which would be achieved if node i would be processed for pi
consecutive time units. The specific values for both pi and τi are determined
independently. The travel time between each pair of nodes (i, j) is dij (dij ≥ 0).
We assume that dij = dji and that the triangle inequality holds, which means
that the direct travel time between any pair of nodes is never larger than the
travel time between both nodes via a detour to any other node. Furthermore, a
maximum temperature of Tmax is imposed. The goal of the ITSP is to minimize
the time at which the “salesperson” returns to the depot and all nodes have
been fully processed. As a result, the objective function value consists of the

total processing time (
∑|V |

i=1 pi), the times traveled between the nodes and
any waiting time incurred. Consider that the latter two depend on the route
selected through the network, whereas the former is independent of the route
taken. Finally, we wish to point out the use of some terminology. For the ITSP,
each node i may be visited multiple times, with a different visit implying
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that at least one other node has been (partially) processed and traveled to
in between. Additionally, each visit may consist of multiple processing steps,
which are separated by waiting times. In this case, however, we do not leave
node i, but wait for it to cool down, before we continue with processing.

2.2 Temperature functions

To model the temperature Ti(t) of node i after ti consecutive time units of
processing we use the following general polynomial function:

Ti(ti) = τi · (ti/pi)a, ti ≤ pi (1)

with a a constant which determines the increase rate (a ∈]0; +∞[). A value
of a between 0 and 1 (neither included) leads to a concave temperature increase
function (fast initial increase), whereas a value larger than 1 leads to a convex
function (slow initial increase). A value of 1 corresponds with a linear increase.
Figure 1 shows an example of how the node temperature increase function can
differ based on the selected value for a. Furthermore, a can be seen as a feature
of the problem studied and the nature of processing, which determines how
the temperature of the material increases.

Allow us to illustrate our reasoning with a simple example. Assume that
for a given node i (pi = 10, τi = 10), we have a value for a of 0.5 (which
corresponds with the a = 0.5 curve in Figure 1). If we furthermore assume
a Tmax value of 7, this leads to a maximum consecutive processing time ci
for node i of 4 time units (= bpi·exp(ln(Tmax/τi)/a)c), by rounding down the
inverse of Function (1) given a temperature Ti(t) of 7. Note that we round the
result down to the nearest integer, since we assume integer processing times.

So far, however, we have only explained how the temperature increase is
modeled, but not the temperature decrease. Provided that the increase func-
tion, given a node i, only depends on the heating parameter a, we choose to
employ the same function but with a different cooldown parameter b:

Ti(ti) = τi · (ti/pi)b, ti ≤ pi (2)

The way we want to use this decrease function is, however, different from
the manner in which we use the increase function. Recall from the earlier
example, that for node i we had determined that the maximum number of
consecutive time units of processing ci was 4. The cooldown function now
allows us to determine how long it takes to once again reach the node start
temperature of 0, assuming no further processing occurs in the meantime.
From Function (1) we calculate the actual temperature after processing 4
time units, which yields 6.32. This actual temperature will never be higher
than Tmax, since ci is determined by rounding down the inverse of Function
(1), given Tmax. We now calculate the inverse of Function (2), assume b = 2,
with a temperature of 6.32. We round up the resulting number of time units
of 8.37 to 9, to ensure that node i fully cools down.
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Fig. 1 Example temperature functions: the higher (lower) the value for a, the slower (faster)
the initial T increase.

Table 1 Example of how a visit to node i can be split into multiple processing steps (PS),
with waiting time in between the different steps to ensure node i cools down sufficiently.

PS 1 2 3

ti 4 4 2
wi 9 3 0

Recall, however, that the total pi value of node i in the example was 10.
One way to finish work on node i entirely is to process another 4 time units,
cool down such that the final 2 time units can be processed, and then finish
processing. For the example in Table 1, this leads to another waiting time of
3 time units, based on functions (1) and (2) (details are omitted for the sake
of conciseness).

A summary of the way in which node i is processed in the example is given
in Table 1, with ti the selected processing time for the current processing step
PS and wi the waiting time after processing. Terminology wise, it is worth
mentioning that in this example we use three processing steps for a single visit
to node i.

The manner in which Functions (1) and (2), based on given a and b values,
are employed, can then be summarized as follows:

1. Function (1) is used to model the temperature increase of a node i.
2. The maximum number of consecutive time units being processed (ci) is

calculated, based on the inverse of Function (1) and a given value for Tmax.
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3. Based on a processing time ti, which is never larger than ci, the resulting
temperature is determined by Function (1).

4. This temperature value is then employed to calculate the required cooldown
time to reach a node temperature of 0, based on the inverse of Function
(2).

5. The interplay between Functions (1)-(2), and hence between a and b, de-
termines what the best way is to minimize waiting time, for a given visit
of a node i and a required processing time for that visit.

6. Different values for a and b allow for vastly different types of increase and
decrease functions, and hence different types of applications.

3 Methodology

3.1 Metaheuristic framework

We employ the metaheuristic framework of Vidal et al. (2012, 2013) as starting
point for our own algorithm. The hybrid genetic search with adaptive diversity
control (HGSADC) metaheuristic is a hybrid metaheuristic framework, which
combines the exploration elements of a classical genetic algorithm with both
population diversity management and with efficient local search procedures.
Given the intricate nature of the ITSP as discussed in Section 2, we have
selected the HGSADC as metaheuristic framework, since it allows for a focus
on local search techniques and deals with infeasible solutions, both of which
we feel are crucial for the ITSP. Furthermore, the HGSADC achieved excellent
results for the vehicle routing problems discussed in Vidal et al. (2012, 2013).
Finally, in this abstract we focus, albeit briefly, on the components that we
designed specifically for the ITSP, namely the solution representations and
decoding procedure, since we have not deviated from the general structure of
the HGSADC. An overview of the decoding procedure is provided in Figure 2.

3.2 Decoding procedure

Since a metaheuristic algorithm operates on a solution representation and not
on a solution itself, this is a crucial algorithm component. Leyman et al. (2019)
unambiguously showed that, albeit for a specific project scheduling problem,
the choice of a solution representation deserves more attention than it in gen-
eral receives in literature. The following two types of solution representations
are used:

– Node list + processing time list (NL+PTL): A NL holds the order in
which the nodes are to be visited, similar to a representation for the TSP,
with the major difference that nodes may occur more than once, signifying
multiple visits. The PTL holds the time processed during the current visit
to the corresponding node in the NL (both the NL and PTL have the same
length). A major downside of this PTL is that the sum of all values for a
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Fig. 2 Overview different steps decoding procedure.

given node i not only has to equal pi, but also that each PTL value has to
lie in the interval [1; pi]. As a result, a repair operator is required as well.

– Node list + random key list (NL+RKL): The NL functions in the same
manner as discussed earlier, but the general logic behind the RKL is that
it contains only a floating point number between zero and one for each
visit. Specifically, each value in the RKL corresponds with the fraction of
the node’s processing time to be completed during the current visit. This
way, we only need to make sure that the sum of the RKL values for the
same node equals one. We do, however, need a translation procedure when
constructing a tour, to convert the RKL values to actual processing times.

4 Computational study

4.1 Test data

We generate test data based on the features in Table 2. Aside from the tem-
perature constrainedness (TC), all features have been discussed in Section 2.
The value for TC determines how tight the maximum temperature restriction
is, given τi values for individual nodes. The value for Tmax is calculated as

follows: Tmax =
∑|V |

i=1 τi· TC /|V |. As a result, a low (high) value for TC leads
to a low (high) Tmax value as well. For each combination of instance features,
10 instances are generated, which results in a total dataset of 4320 instances.

4.2 Computational results

Table 3 shows a summary of the results for both the NL+PTL and NL+RKL
combinations in terms of total time, total travel time and total waiting time.
Each time, a stopping criterion of 5000 tours was used, to allow for a computer
and code independent comparison (Leyman and De Causmaecker, 2017). Each
cell in the table contains the average value over all 4320 test instances used.
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Table 2 Instance features and feature values of test data.

Feature Values

|V | 50, 100
pi [1; 20], [1; 100]
τi [1; 20], [1; 100]
dij [1; 20], [1; 100]
TC 0.25, 0.5, 0.75
a 0.5, 1.0, 2.0
b 0.5, 1.0, 2.0

Table 3 Overview results for different solution representations (average).

Total time Total travel time Total waiting time

NL+PTL 5030.93 1155.27 1567.95
NL+RKL 5036.09 1160.86 1567.51

Pham et al. (2020) 5647.83 1227.98 2112.13

Table 4 Temperature function results for different solution representations (average total
time).

NL+PTL NL+RKL Pham et al. (2020)
0.5 7234.18 7245.81 8587.31

a 1 4147.95 4158.06 4467.74
2 3710.66 3704.40 3888.44

0.5 3976.68 3967.76 4123.68
b 1 5050.12 5057.89 5484.14

2 6066.00 6082.62 7335.66

We also compare with the results of Pham et al. (2020), by including their de-
coding procedure in the HGSADC. This way, we can show that there is a clear
contribution of taking the temperature functions into account in the proposed
decoding procedures, since Pham et al. (2020) assume linear functions and do
not include any mechanism to account for different types of functions.

Based on the results in Table 3, we can conclude that both NL+PTL
and NL+RKL outperform the other case, but that the difference between
themselves is small. The large improvement in average waiting time compared
with Pham et al. (2020) shows that explicitly considering the temperature
functions is worth its salt.

Table 4 provides more detailed results of the three alternatives, by splitting
results based on the different a and b values used in the test design (Table 2).
In general, the results are in line with those of Table 3, but we can see that
regardless of a and b values there is an improvement compared to the decod-
ing procedure of Pham et al. (2020). Hence, we can argue that our decoding
procedure performs better in general, since linear functions are included in the
results of Table 4 as well (a = 1, b = 1).
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4.3 Critical remarks

Due to the results discussed above, we should more closely study the impact
of travel versus processing times of a visit, since currently it seems that the
algorithm prefers waiting time over travel time. We believe this is due to the
travel times in the test data on average being of similar size as the processing
times. This implies that if the average travel times are smaller than or similar
to the average processing times, it is preferential to wait instead of moving to
another node. We assume that as the travel times grow comparatively smaller,
moving to another node instead will become the better choice, on average. But
in order to be able to verify (or reject) this assumption, further testing with a
more diverse test set is required.

5 Conclusions & future work

In this paper, we have discussed the intermittent traveling salesperson problem
(ITSP) with generalized temperature functions. The ITSP is an extension of
the well-known traveling salesperson problem (TSP), but in which each node
has to be processed for a given duration and not just visited. Processing a
node increases the node temperature, which should not exceed a maximum
value. As a result, the ITSP may require multiple visits to nodes, unlike the
TSP, where a single visit is imposed. Additionally, we have proposed general
polynomial functions, which determine the manner in which node temperature
increases and decreases.

To solve the ITSP with generalized temperature functions, we have em-
ployed the hybrid genetic search with adaptive diversity control of Vidal et al.
(2012, 2013) as metaheuristic framework, and focused our contribution on so-
lution representation alternatives and a decoding procedure.

In the future, we will study specific applications of the ITSP, closely linked
to real-world problems to demonstrate the ITSP’s practical relevance. Alter-
natively, we aim to consider heat transfer functions from physics and thermo-
dynamics, which differ from the presently modeled cooling schemes for e.g. the
metal surface processing application discussed earlier.

From a methodology and testing point of view, we will further investigate
the decoding procedures, to better grasp the ITSP’s intricacy, and to include
additional solution representations. The test design should also be expanded
to allow for networks of different (and larger) sizes, alongside a greater de-
gree of variation in the heating and cooldown feature values. The algorithm’s
parameters should be tuned using an automatic algorithm configurator (e.g.,
SMAC, ParamILS, irace) rather than using the default values of Vidal et al.
(2012, 2013) and ad-hoc values for additional parameters. Finally, the results
should be analyzed in more detail, to allow for a clear evaluation of the con-
tribution of each algorithm component, and to determine for which (type of)
instances which solution representation leads to the best results.
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Solving the Production Leveling Problem with
Order-Splitting and Resource Constraints

Johannes Vass · Nysret Musliu · Felix
Winter

Abstract We investigate an extended problem formulation of the Production
Leveling Problem (PLP), which was recently introduced in the literature. For
the PLP problem the task is to assign orders to production periods such that
the load is balanced, capacity limits are not exceeded and the order’s priorities
are considered. The extended problem (PLP-OSRC) introduced in this paper
additionally includes order-splitting, resource constraints and due dates. We
provide a mixed integer programming formulation for the PLP-OSRC based
on the existing model for the PLP and evaluate it with a state-of-the-art MIP
solver. To solve practically sized instances we apply a local search approach
based on simulated annealing and propose two innovative neighborhood moves.
We compare our approaches on two sets of randomly generated instances and
show that the simulated annealing approach provides competitive results to
MIP for the smaller instances. Moreover, it provides good solutions for very
large instances that could not be solved by our MIP model in a reasonable
amount of time.

Keywords Production Leveling, Simulated Annealing, MIP

1 Introduction

As many modern-day factories in the area of industrial manufacturing migrate
towards full automation, a strong need for efficient automated production
planning systems becomes more and more apparent. Although many known
practical planning problems deal with short-term scheduling and long-term
planning tasks, there is also an important need for mid-term planning systems

Johannes Vass, Nysret Musliu and Felix Winter
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that aim to efficiently distribute orders created by long-term planning systems
into smaller short-term scheduling problems.

Recently, we have introduced such a mid-term planning problem called the
production leveling problem (PLP) in [11,10]. The PLP takes a number of
jobs as its input and aims to evenly distribute the production orders in an
optimized plan over a given planning horizon. Finding a balanced distribution
of the workload over the set of production periods is mainly motivated by the
idea that solutions to the PLP will lead to improved short-term schedules that
efficiently utilize the production capacities in each period and to encourage
just-in-time manufacturing.

Applications for the PLP arise in different areas of the industry. For ex-
ample, a practical application of the PLP has been deployed by our industry
partners in electronic component manufacturing, where it is desired to assign
a well balanced product mix to each production period. As setup costs that
arise between the manufacturing of different product families are not too high
in this case, a well balanced product mix leads to increased capacity utilization
as well as decreased storage- and transport costs as just-in-time production
in the sense of heijunka [3] is encouraged. Several practical instances for this
application have been introduced and are available1.

Leveling problems similar to the PLP have been studied in other applica-
tion domains in the past like for example the balanced academic curriculum
problem [2,4], nurse scheduling [7,9,8] or assembly line balancing [1]. However,
in contrast to other leveling problems the PLP includes the consideration of
order priorities in its objective function, which is of high importance for prac-
tical production planning problems.

Previously, we have shown that the PLP is NP-hard and have proposed
metaheuristic approaches as well as an exact approach based on mixed integer
programming in [11]. Although these existing solution methods can be used
to approach practically sized instances of the problem, some real life mid-
term planning scenarios cannot be tackled with the standard PLP problem
formulation, as it does not consider the availability of resources used during
production. Furthermore, the original specification of the PLP does not allow
to split given orders into multiple sub orders, which can in some scenarios
improve the quality of solutions.

In this paper, we therefore introduce an extended problem formulation
of the PLP that supports order-splitting and the consideration of resource
constraints called the production levelling problem with order-splitting and
resource constraints (PLP-OSRC). In addition to providing a formal specifica-
tion to the problem, we extend the mixed integer programming formulation for
the PLP to model the PLP-OSRC, which allows us to approach instances of the
extended problem with state-of-the-art mixed integer programming solvers.
Furthermore, we propose two innovative neighborhood moves that we utilize
within a metaheuristic approach based on simulated annealing to solve very
large realistically sized instances of the PLP-OSRC. Finally, we implement

1 https://www.dbai.tuwien.ac.at/staff/jvass/production-leveling/
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all of our proposed methods and perform a large number of experiments to
empirically evaluate the performance of the investigated solution approaches.

The remainder of the paper is structured as follows: Section 2 briefly re-
views the formal problem specification of the PLP and then gives a detailed
formal specification of the PLP-OSRC. Afterwards, we propose the integer
programming formulation for the extended problem and describe the details
absout the metaheuristic approach and the novel neighborhood moves in Sec-
tion 3. In Section 4 we give an overview of all conducted experiments and
discuss computational results before we give concluding remarks in Section 5.

2 Problem Statement

In this section, we provide a description of the production leveling problem
with resource constraints and order-splitting (PLP-OSRC), which is a real-life
industrial planning problem that is concerned with evenly distributing a set
of orders over a planning horizon.

Recently, we introduced the production leveling problem (PLP) in [11]. The
main differences between the PLP and the extended problem, that we describe
in this paper, are that given orders are allowed to be split into multiple parts
and that additional resource constraints can be defined for the PLP-OSRC.

In the following, we first review the problem description for the PLP in
Section 2.1, before we later in Section 2.2 introduce the notion of order splits
and additional constraints of the extended problem.

2.1 The Production Leveling Problem

The input to the PLP contains a list of orders to be distributed over the
planning horizon, where each order defines a number of demanded items of a
particular product type that need to be produced. Furthermore, the impor-
tance of each order is defined by a given priority value.

The goal of the problem is to assign each order to a single period in the
given production horizon. A feasible solution needs to make sure that given
maximum production volumes for each of the periods are not exceeded, where
each period defines an overall maximum production volume and product type
specific maximum production volumes.

The following lists the formal parameters and decision variables to an in-
stance of the PLP:
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Input Parameters

K = {1, . . . , k} Set of orders, where k is the number of orders
M = {1, . . . ,m} Set of product types, where m is the number of

product types
N = {1, . . . , n} Set of periods, where n is the number of periods
c ∈ R+ the maximum overall production volume per period
ct ∈ R+ for each product type t ∈M the maximum

production volume per period
dj ∈ Z+ for each order j ∈ K its associated demand
pj ∈ Z+ for each order j ∈ K its associated priority
tj ∈ Z+ for each order j ∈ K the product type
d∗ ∈ Z+ the target production volume per period, i.e. 1

n

∑
j∈K dj

d∗t ∈ Z+ the target production volume per period for each
product type t ∈M , i.e. 1

n

∑
j∈K|tj=t dj

Variables

– A variable yj for each order j ∈ K determines in which period the order
shall be produced:

yj ∈ N ∀j ∈ K

– The total production volume for each period is stored in auxiliary variables
wi ∀i ∈ N :

wi =
∑
j∈K:
yj=i

dj ∀i ∈ N

– The total production volume for each product type and period is stored in
auxiliary variables wi,t ∀i ∈ N, t ∈M :

wi,t =
∑
j∈K:

yj=i∧tj=t

dj ∀i ∈ N, t ∈M

Hard Constraints

The following hard constraints impose restrictions on the maximum production
volumes for each period in the planning horizon:

– H1: The limit for the overall production volume is satisfied for each period:

∀i ∈ N wi ≤ c

– H2: The limit for the production volume of each product type is satisfied
for each period:

∀i ∈ N, t ∈M wi,t ≤ cp
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Objective Function

A multi-objective function which includes three objectives determines the qual-
ity of solutions to the PLP. Intuitively, an optimized production plan should
assign orders to periods such that the production volume is balanced between
the periods while trying to adhere to the production sequence which is implied
by the order’s priorities.

Therefore, the objectives for the PLP are defined as follows:

1. Minimize the sum of deviations of the planned production volume to the
average demand (i.e. the target value d∗) for each period, ignoring the
product types.

f1 =
∑
i∈N
|d∗ − wi| (1)

(2)

2. Minimize the sum of deviations of the production volume of each product
type to its respective mean target value d∗t , making sure that the production
of each product type is being leveled.

f2 =
∑
t∈M

(
1

d∗t
·
∑
i∈N
|d∗t − wi,t|

)
(3)

(4)

3. Minimize the number of times a higher prioritized order is planned for a
later period than a lower prioritized order, which we call a priority inver-
sion. This objective makes sure that it costs less to plan the production of
more important orders for earlier periods.

f3 =|
{

(i, j) ∈ K2 : yi > yj and pi > pj
}
| (5)

In order to combine the objectives (f1, f2, f3) into a single objective func-
tion each of the individual cost components is normalized as follows:

g1 =
1

n · d∗
· f1 (6)

g2 =
1

n ·m
· f2 (7)

g3 =
2

k · (k − 1)
· f3 (8)

The normalization ensures that g1 and g2 stay between 0 and 1 with a high
probability. Only for degenerated instances, where even in good solutions the
target is exceeded by factors ≥ 2 higher values are possible for g1 and g2. The
value of g3 is guaranteed to be ≤ 1 because the maximum number of inversions
in a permutation of length k is k · (k − 1)/2.
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The final objective function of the PLP is a weighted sum of the three
normalized objective functions, where user defined weights a1−−3 determine
the relative importance of each objective.

minimize g = a1 · g1 + a2 · g2 + a3 · g3 (9)

Figure 1 shows a small example instance of the PLP with five orders,
which are shown as boxes, where the box height corresponds to the order size.
The orders should be distributed over three production periods such that the
distances of the stacks of orders and the dashed target line is minimized and
no stack crosses the red line which represents the overall maximum production
volume.

Similar to the first example, Figure 2 shows a solution for a small example
instance with five orders. The numbers inside the orders this time determine
the order priorities, where a larger number indicates a higher importance. In
this case, it is undesirable that the red order is assigned to an earlier period
than the yellow or blue order. Whenever a pair of two orders is not planned
so that their priority values are descending over time they cause a priority
inversion in the production plan. The third objective of the PLP aims to
minimize the total number of priority inversions. In the example, a better
solution could be obtained by swapping the red order with the yellow one,
because it would eliminate both priority inversions.

O2

O1

O1

O2

O5

O4

O3

period 1 period 2 period 3

O5

O4

O3

Orders Example solution

O2

O1

O1

O2

O5

O4
O3

period 1 period 2 period 3

O5

O4

O3

Orders Example solution

Fig. 1: Example visualizing the effects of the first objective f1 that aims to
minimize the total deviation to the target value (i.e. the dashed line). The
solution shown in this example is optimal w.r.t. this objective.

2.2 The Production Leveling Problem with Order-Splitting and Resource
Constraints

The PLP as we described it in the previous section appears in many real-life in-
dustrial applications where production volumes are ought to be leveled evenly
over the planning horizon to keep the production process robust and efficient.
However, as it assumes that each order is indivisible, it cannot be used in any
practical context where single customer orders can actually be distributed over
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Orders Example solution
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Orders Example solution
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period 1 period 2 period 3

Fig. 2: Example solution that contains two priority inversions. The numbers
in each box determine the priority value of the associated order.
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Fig. 3: Example solution, where the blue order (with priority 7) is split between
period 2 and 3. This way, we do not introduce any priority inversion and
nevertheless get a similarly good leveling as in the example before.

multiple periods in the planning horizon. Figure 3 shows an example why split-
ting orders can be sometimes useful: The additional flexibility that is obtained
by allowing orders to be split can help to create solutions that are good both in
terms of levelness and prioritization. Another shortcoming of the basic PLP in
practical environments is the absence of resource constraints, which prevents
us, for example, to take staffing and the availability of tools or machines into
account while distributing orders over production periods.

In this section, we therefore introduce a novel extension of the production
leveling problem that we call the production leveling problem with order-
splitting and resource constraints (PLP-OSRC). Instances to the PLP-OSRC
define the same parameters as specified for the PLP in Section 2.1, but include
additional parameters that determine how many splits per order are feasible
and provide the parameters about the additional constraints. The following
lists the additional input parameters for the PLP-OSRC:
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Input Parameters

R = {1, . . . , o} Set of secondary resources where o is the number of
secondary resources

pdmin
j ∈ N the earliest period to which an order j ∈ K can be assigned

without a penalty
pdmax

j ∈ N the latest period to which an order j ∈ K can be assigned
without a penalty

psmin
j ∈ {1, . . . , dj} the minimum size of any partition of order j ∈ K

pcmax
j ∈ Z+ the maximum number of partitions of order j ∈ K

ruj,r ∈ R+
0 the amount of usage of secondary resource r ∈ R by order

j ∈ K

rumin
r ∈ R+ the minimum penalty-free usage of resource r ∈ R in each

period
rumax

r ∈ R+ the maximum penalty-free usage of resource r ∈ R in each
period

Since a single order can be split and planned into multiple periods, the
decision variables of the PLP-OSRC have to capture additional information
than for the PLP. The following list defines the variables for the PLP-OSRC:

Variables

– Variables xi,j determine the amount of order j which is planned to be
produced in period i. If a variable xi,j > 0, we say that a partition of order
j is planned in period i.

xi,j ∈ Z+
0 ∀i ∈ N, j ∈ K

– Auxiliary variables ystartj and yendj determine the periods where the first
and last partition of an order j are planned:

ystartj = min({i ∈ N | xi,j > 0}) ∀j ∈ K

yendj = max({i ∈ N | xi,j > 0}) ∀j ∈ K
– The production volume for each period is stored in auxiliary variables wi:

wi =
∑
j∈K

xi,j ∀i ∈ N

– The production volume for each product type and period is stored in aux-
iliary variables wi,t:

wi,t =
∑
j∈K:
tj=t

xi,j ∀i ∈ N,∀t ∈M

– Auxiliary variables ui,r capture the total usage of secondary resources in
each of the planning periods, where the resource usage of a single order
partition is determined relative to the total order usage.

ui,r ∈ R+
0 =

∑
j∈K

ruj,r ·
xi,j
dj

∀i ∈ N, r ∈ R
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Hard Constraints

In addition to the two production volume hard constraints from the PLP, the
PLP-OSRC defines another two hard constraints that restrict the minimum
partition size and the maximum partition count of each order:

– H3: The minimum partition size is reached for every partition of every
order:

∀i ∈ N, j ∈ K xi,j = 0 ∨ xi,j ≥ psmin
j

– H4: The maximum partition count is not exceeded for any order:

j ∈ K |{i ∈ N | xi,j > 0}| ≤ pcmax
j

Objective Function

The three objectives f1, f2, f3 defined in Section 2.1 are also used in the multi-
objective function of the PLP-OSRC. However, f3 has to be slightly refor-
mulated to be compatible with the novel variable definitions. Furthermore,
two new objectives f4 and f5 influence the quality of solutions to the PLP-
OSRC depending on the earliness/lateness of orders and the over- and under-
utilization of resources.

The following defines objectives f3, f4, f5 for the PLP-OSRC:

– Function f3 counts the number of priority inversions in the assignment
where they are redefined to handle order splits. That is, f3 counts the
number of order-pairs (i, j) for which i has a higher priority than j but i
finishes only after j starts.

f3 =|
{

(i, j) ∈ K2 : pi > pj and yendi > ystartj

}
| (10)

(11)

– The objective function f4 calculates a penalty for every order whose first
partition is planned before the order’s minimum period or whose last par-
tition is planned after the order’s maximum period.

f4 =
∑
j∈K

(
max(pdmin

j − ystartj , 0) + max(yendj − pdmax
j , 0)

)
(12)

(13)

– Objective f5 calculates a penalty for over-usage and under-usage of sec-
ondary resources.

f5 =
∑
r∈R

∑
i∈N


1− ui,r

rumin
r

if ui,r < rumin
r

ui,r

rumax
r
− 1 if ui,r > rumax

r

0 otherwise.

(14)
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Whereas objectives f1, f2, f3 can be normalized as specified in Section 2.1,
objectives f4 and f5 are normalized as follows:

g4 =
1

n · k
· f4 (15)

g5 =
1

n · o
· f5 (16)

(17)

Objective g4 applies normalization through a division by the number of
orders times the number of periods. As the penalty for each order is at most
k, the normalized objective is also guaranteed to be≤ 1. The resource objective
g5 is normalized by the number of periods and resources which normally also
leads to values between 0 and 1, however the upper bound is not strict. When
looking at instances without secondary resources, g5 must not be considered
in the objective function because it would yield a division by zero.

The final objective function for the PLP-OSRC is the following weighted
sum (with user defined weights a1 − a5).

minimize g = a1 · g1 + a2 · g2 + a3 · g3 + a4 · g4 + a5 · g5 (18)

3 Solution Approaches

In the previous section we have provided an in depth problem definition of the
PLP-OSRC. In this section, we first propose an integer programming formu-
lation of the problem in Section 3.1 before we later describe a metaheuristic
local search based solution approach in Section 3.2

3.1 Integer Programming Model

Previously, we proposed an integer programming model for the PLP [11]. In
this section we extend that model for the PLP-OSRC, based on the formal
problem description that we specified in Section 2. We carry over the input
parameters without changes, which is why they are not repeated in this section.
In contrast to the integer programming model for the PLP, th e The former
binary decision variables xij are converted to an integer domain in order to
model the planned production amount for order j in period i and thus account
for order splits. Furthermore, the model for the PLP-OSRC The variables and
detailed formulation are as follows:
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Variables

xij ∈ Z+ for each i ∈ N , j ∈ K stating how much demand of order j is planned in
period i

x̂ij ∈ {0, 1} for each i ∈ N , j ∈ K stating whether a partition exists in period i. A
partition exists for order j in period i iff xij > 0.

ystartj ∈ N for each order j ∈ K the period assignment of its first partition

yendj ∈ N for each order j ∈ K the period assignment of its last partition

zij ∈ {0, 1} for orders i, j ∈ K where pi > pj , existence of a priority inversion between i
and j

s+i ∈ R+ for each i ∈ N the surplus production volume for period i

s−i ∈ R+ for each i ∈ N the missing production volume for period i

s+it ∈ R+ for each i ∈ N , t ∈M the surplus production volume for period i and product
type t

s−it ∈ R+ for each i ∈ N , t ∈M the missing production volume for period i and product
type t

u+
ir ∈ R+ for each i ∈ N , r ∈ R the amount of over-usage of resource r in period i

u−ir ∈ R+ for each i ∈ N , r ∈ R the amount of under-usage of resource r in period i
vstartj ∈ Z+ for each j ∈ K the amount of violation of the earliest period soft constraint

vendj ∈ Z+ for each j ∈ K the amount of violation of the latest period (=̂ due date) soft
constraint
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Formulation

min a1g1 + a2g2 + a3g3 + a4g4 + a5g5 (19)

s.t.
∑
i∈N

xij = dj j ∈ K

(20)

xij ≤ dj · x̂ij j ∈ K
(21)

ystartj ≤ i + (n− 1) · (1− x̂ij) j ∈ K, i ∈ N

(22)

yendj ≥ i · x̂ij j ∈ K, i ∈ N

(23)∑
j∈K

xij + s+i − s−i = d∗ i ∈ N

(24)∑
j∈K|tj=t

xij + s+it − s−it = d∗t i ∈ N, t ∈M

(25)

d∗ + s+i ≤ c i ∈ N
(26)

d∗t + s+it ≤ ct i ∈ N, t ∈M
(27)

xij ≥ psmin
j · x̂ij j ∈ K

(28)∑
i∈N

x̂ij ≤ pcmax
j j ∈ K

(29)

yendi − ystartj ≤ (n− 1)zij i, j ∈ K | pi > pj
(30)

vstartj ≥ pdmin
j − ystartj j ∈ K

(31)

vendj ≥ yendj − pdmax
j j ∈ K

(32)∑
j∈K

ruj,r ·
xij

dj
− u+

ir ≤ rumax
r i ∈ N, r ∈ R

(33)∑
j∈K

ruj,r ·
xij

dj
+ u−ir ≥ rumin

r i ∈ N, r ∈ R

(34)

yendi ≤ ystartj i, j ∈ S, S ⊆ K | pi ≥ pj , di = dj , ti = tj
(35)∑

t∈M
(s−it − s+it) = s−i − s+i i ∈ N

(36)

g1 =
1

n · d∗
·
∑
i∈N

(s+i + s−i ) (37)

g2 =
1

n ·m
·
∑
t∈M

(
1

d∗t
·
∑
i∈N

(s+it + s−it)

)
(38)

g3 =
2

k · (k − 1)
·
∑

i,j∈K
zi,j (39)

g4 =
1

2k
·
∑
j∈K

(
vstartj + vendj

)
(40)

g5 =
1

n · o
·
∑
r∈R

∑
i∈N

(
u−ir

rumin
r

+
u+
ir

rumax
r

)
(41)
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Constraints (20) to (25) link auxiliary variables to the decision variables.
Constraint (20) ensures that the total demand of all partitions of j equals
the order’s demand dj . Constraint (21) links the binary variables x̂ij to the
decision variables xij such that xij > 0→ x̂ij = 1. Constraints (22) and (23)
link the xij to the ystarti and yendi variables so that they always hold the
period assignment of the first and last period of any partition of an order,
respectively. Constraint (24) states for each period that the total planned
production volume plus the surplus minus the slack equals the target d∗. As
both variables have positive domains and they are subject to minimization,
at most one of them will be non-zero in any optimal solution. Constraint (25)
repeats this relationship over the variables s+it and s−it for each product type t.

The block of constraints between (26) and (29) models the problem’s hard
constraints. Constraint (26) ensures that the capacity bound per period is sat-
isfied by enforcing that the sum of target demand d∗ and the surplus variable
s+ does not exceed the threshold. Analogously, Constraint (27) enforces the
capacity limit per period and product type. Constraint (28) enforces the min-
imum partition size and (29) the maximum number of partitions into which
an order may be split.

Constraints (30) to (34) populate penalty variables for the objective func-
tion. Constraint (30) links the ystarti and yendi to the zi,j variables which track
the number of priority inversions. It makes sure that for every pair of orders i, j
where i has a higher priority than j, zij is 1 (representing a priority inversion)
if order i finishes after order j starts. The constraints (31) and (32) force the
variables vstartj and vendj to keep track of the violations of the allowed assign-

ment range. Constraints (33) and (34) force u+ir and u−ir to contain the amount
of over-usage and under-usage of resource r in period i. That is achieved by
comparing with the amount of planned resource usage which is given by the
first summand.

Finally, there are two redundant constraints for strengthening the formu-
lation: Constraint (35) enforces a dominance relation for all pairs of orders
which have the same product type and demand value. The constraint requires
that the higher prioritized order ends not later than the lower prioritized one
starts, which is sensible because otherwise we could swap the two orders to
obtain a better solution. This cuts off parts of the search space where the

optimal solution cannot reside. Constraint (36) links the s
{+,−}
i and s

{+,−}
it

variables together, which also leads to improvements in the average run-time.

The objective function is equivalent to the one presented in Section 2.2
but here it is stated on the variable set of the MIP formulation. In g1, the
sum of the slack and surplus variable (s+i + s−i ) is equivalent to the absolute
difference between planned demand and target demand |d∗ − wi|, because at
least one of s+i and s−i will be 0 in any optimal solution and the other one
holds the absolute difference. The same holds true for the analogous variables
in g2. Similarly, instead of using one variable per period to track the resource
usage, the two separate variables for over-usage and under-usage u+ir and u−ir
are used to compute the cost component g5.
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3.2 Metaheuristic Approach

The IP formulation we proposed in the previous section can be used to solve
instances of the PLP-OSRC to optimality. However, solving realistically sized
instances with a large number of variables may often not be possible for an
IP solver within reasonable run-time and memory limitations. Therefore, we
additionally propose a local search based metaheuristic solution approach to
the PLP-OSRC in this section.

Previously, we have investigated a construction heuristic and a local search
approach using simulated annealing for the PLP in [11] and proposed basic
neighborhood moves that can reposition single orders and swap pairs of orders.

In this section, we extend the two neighborhoods previously proposed for
the PLP and furthermore propose two innovative search neighborhoods for the
PLP-OSRC

3.2.1 Neighborhood Relations

We propose four neighborhood relations when approaching the PLP-OSRC
with local search: The first two are extensions of the search neighborhoods
to the PLP that have been previously proposed in [11]. Basically, instead of
moving and swapping complete orders, the new versions move and swap single
order partitions. The third neighborhood splits and merges order partitions
and is able to exchange demands between partitions of an order. Finally, the
fourth neighborhood shifts all partitions of a single order at once.

In the following, we describe the neighborhood operators in detail:

Move-Partition Neighborhood The move-partition neighborhood of a solution
s consists of all solutions s′ whose only difference to s is that one partition of
some order has been moved to a different period. When splits are disallowed
and thus every order has exactly one partition, this is equivalent to the move-
order neighborhood of the basic PLP version. When generating random moves
for this neighborhood, we uniformly sample the order and the partition as well
as the target period.

Swap-Partitions Neighborhood The swap-partitions neighborhood of a solu-
tion s consists of all solutions s′ whose only difference to s is that two order
partitions of different orders, which are not assigned to the same period in s
appear with swapped period assignments in s′. In random neighborhood gen-
eration, the partitions to be swapped are chosen uniformly at random among
all pairs of partitions of different orders, which are not already assigned to the
same period.

Split Neighborhood The split neighborhood of a solution s consists of all solu-
tions s′ which differ from s only with respect to one order, where the possible
changes are:
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– One partition of that order is split into two parts and the new part is
moved to some other period.

– Two partitions of that order are merged.
– The sizes of two partitions of that order are changed such that the total

size of the two partitions together stays the same and both partitions re-
main non-empty. In other words, demands are moved from one partition
to another, which is potentially in a different period.

When sampling split moves randomly, first any single order is chosen randomly.
Then, the move is generated such that the three options described above are
equally likely.

Shift-order neighborhood The shift-order neighborhood of a solution s consists
of all solutions s′ which differ from s only with respect to a single order, whose
partitions all have been shifted i periods to the left or to the right. If a partition
cannot be shifted any more because it is already in the first or last period, it
remains in that period. When sampling random shift-order moves, an order is
chosen uniformly at random and i is chosen from {−1, 1}.

3.2.2 Simulated Annealing

Similar as previously described for the PLP in [11], we use a simulated an-
nealing metaheuristic to approach the PLP-OSRC in this paper. Simulated
annealing was first introduced in [5] and resembles the physical process of
annealing in metallurgy. The basic idea is to iteratively apply randomly gen-
erated neighborhood moves to an initial solution to the problem. Whether a
neighborhood move is accepted, depends on the resulting solution quality and
a temperature parameter which is cooled down over the course of the search
process.

Algorithm 1 shows the detailed simulated annealing procedure:
The acceptance function uses the metropolis criterion [5], where the prob-

ability P (i ⇒ j) to accept a move from solution i to solution j is defined as
follows (f(x) is the objective function):

P (i⇒ j) =

{
1, if f(j) ≤ f(i).

exp
(

f(i)−f(j)
t

)
, otherwise.

(42)

We further use a geometric cool down scheme:

ti = α · ti−1 (43)

The simulated annealing procedure shown in 1 relies on a number of pa-
rameters and an initial solution. We use the construction heuristic that was
previously proposed in [11] to produce an initial solution, and set N1−4 to the
search neighborhoods we proposed in this section. The remaining parameters
have to be carefully selected depending on the computational environment.
We describe the tuning of these parameters in Section 4.
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Algorithm 1: Simulated Annealing
Data: initialSolution, neighborhoods Ni with probabilities pi, tmax, tmin,

iterations per temperature w, timeLimit, iterationLimit
Result: a solution at least as good as initialSolution

1 currentSolution← initialSolution;
2 bestSolution← currentSolution;
3 t← tmax;
4 while t ≥ tmin and ¬ time limit reached and ¬ iteration limit reached do
5 foreach j ∈ 1, . . . , w do
6 N ← choose one of neighborhoods Ni according to probabilities pi;
7 m← select a random move out of N (currentSolution);
8 if Accept(m, t) then
9 currentSolution← Apply(m, currentSolution);

10 if currentSolution is better than bestSolution then
11 bestSolution← currentSolution;
12 end

13 end

14 end
15 t← Cool-Down(t);

16 end
17 return bestSolution;

4 Experimental Evaluation

In this section, we provide a detailed description of our experimental environ-
ment and give an overview of our conducted experiments. We first describe an
instance generator for the PLP-OSRC in 4.1, that we use to generate a large
number of benchmark instances for our experiments. Later in Section 4.2, we
provide the details on how parameters for the simulated annealing algorithm
have been selected. Finally, we describe our computational environment and
discuss the final experimental results in sections 4.3 and 4.4.

4.1 Instance Generation

To generate instances for the PLP-OSRC, we extend the random instance
generator we previously proposed in [11] for the PLP with additional input
parameters regarding partitioning, resources and due dates.

Given a number of orders k, periods n, product types m and resources o,
the heuristic constructs an initial solution with the following steps:

1. Partition the number of orders k into m parts o1 . . . om, one for each prod-
uct type.

2. Randomly choose the maximum priority of all orders pmax ∈ {1, . . . , 10}
3. For each product t ∈ M , create a set of demands Dt and randomly select

the size of the set between 1 to 50. Then, insert the corresponding number
of items into the set, where each item is a randomly selected value d ∈
{1, . . . , random(1000−5000)} (the upper bound is a random value between
1000–5000 which is recalculated for each product type).
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4. To determine resource usages for each product type, first randomly select
a probability between 0.0 and 1.0. Then, based on this probability decide
for each resource whether or not it is used for the product type. If it turns
out a resource is used for the product type, randomly select a usage value
between 0.0 and 1.0. This usage value then determines the resource usage
per unit of demand for the particular product type.

5. For each product t ∈M , generate ot orders, where each order is generated
as follows:
(a) Randomly choose the demand dj from the set Dt.
(b) Randomly choose the priority from {1, . . . , pmax}.
(c) The usage of each resource is calculated by multiplying the order de-

mand dj with the previously chosen usage factor. The resulting value
is rounded up.

(d) Randomly choose the earliest start pdmin
j from {1, . . . , b3/4 · nc}.

(e) Randomly choose the latest end pdmax
j from {pdmin

j + 1, . . . , n}.
(f) Randomly choose the maximum partition count pcmax

j from {1, . . . , 10}.
(g) Randomly choose the minimum partition size psmin

j from {1, . . . , d1/2 ·
dje}2

6. In order to set the capacity limit c, we first calculate the target demand d∗

as
∑

j∈K
dj/n. The capacity limit c is then derived from the d∗ by multiply-

ing with a random value from the normal distribution σ(1.1, 0.02). Hence,
c is in the expected case 10% larger than d∗. The capacity limits ct for
t ∈M are chosen analogously.

7. The minimum and maximum resource usages per period are calculated
similarly: First, for each resource r, the average usage per period ūr is cal-
culated. Then, the maximum deviation percentage dmax is drawn from the
normal distribution σ(0.1, 0.02), i.e. 10% on average. Finally, the minimum
resource usage rumin

r is set to (1 − dmax) · ūr and the maximum resource
usage rumax

r is set to (1 + dmax) · ūr.

Using the instance generation procedure, we generated a total of 986 re-
alistically sized large instances for our experiments. The following parameters
were sampled uniformly at random: The number of orders k is chosen from
100 . . . 4000, the number of periods n from 2 . . . 80, the number of products m
from 1 . . . 20 and the number of resources o from 1 . . . 5.

Additionally, we generated another set of 20 smaller instances, using the
following random parameters: The number of orders k is chosen from 10 . . . 100,
the number of periods n from 5 . . . 10, the number of products m from 1 . . . 3
and the number of resources o from 0 . . . 3.

2 Note that an order can only be split in two parts if the demand is at least twice as large
as the minimum partition size. Therefore, psmin

j is chosen so that splitting is possible.
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4.2 Parameter Tuning

As previously mentioned in Section 3.2, the simulated annealing algorithm
we use in this paper depends on a number of parameters whose setting has
an influence on the algorithm’s efficiency and effectiveness. We configure the
parameters for our experiments using SMAC, an automatic algorithm con-
figuration tool that relies on Bayesian Optimization in combination with an
aggressive racing mechanism in order to efficiently search through parameter
configuration spaces [6].

We applied SMAC in parallel mode using 24 cores and a total time limit of
96 hours on the large set including 986 instances. For each problem instance,
we specified a time limit of five minutes per run and no iteration limit. The
cooling rate was not tuned but set to a value of 0.95, which however does
not restrict the parameterization of the simulated annealing procedure as the
number of iterations per temperature is still being tuned.

We tuned the initial temperature tmax, the minimum temperature tmin,
the number of iterations per temperature w and a weight for each of the four
neighborhood relations (p1−4) which determines how often it is selected for
the next move. The detailed configuration space with minimum and maximum
values as well as the defaults and the tuning result is shown in Table 1.

Table 1: Configuration space of Simulated Annealing for parameter tuning

Parameter Type Minimum Maximum Default Tuned

Initial Temperature real 0.01 10.0 1 6.2
Minimum Temperature real 10−9 10−3 10−6 7.6 · 10−4

Iterations Per
Temperature integer 103 106 103 1.54788 · 105

Move Partition
Neighborhood Weight integer 0 10 1 0
Swap Partitions
Neighborhood Weight integer 0 10 1 7
Split Order
Neighborhood Weight integer 0 10 1 3
Shift Order
Neighborhood Weight integer 0 10 1 0

Cooling Rate real (fixed) 0.95 0.95 0.95 0.95

Note that the automatically tuned parameters set the weights for the move
partition and shift order neighborhoods to 0, which disables these two neigh-
borhood operators. We therefore evaluated in addition to the automatically
tuned algorithm parameters (C1) also two manually selected parameters con-
figuration that include all neighborhood operators. One that we selected based
on manual tuning with a number of conducted benchmarks (C2) and another
one that uses an equal weight for all four neighborhood operators (C3). Table 2
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shows the details about the three parameter configurations evaluated in our
experiments.

Table 2: Overview of the algorithm parameter configurations used for experi-
mental evaluation

Parameter C1: auto tuned C2: manually tuned C3: equal weights

Initial temperature 6.2 0.01 0.1
Minimum temperature 0.00076 10−9 10−9

Iterations
per temperature 154788 300000 300000
Move Partition weight 0 4 2.5
Swap Partitions weight 7 2 2.5
Split Order weight 3 3 2.5
Shift Order weight 0 1 2.5

Cooling Rate real (fixed) 0.95 0.95

4.3 Computational Environment

We conducted all experiments for this paper (including parameter tuning) on
a computing cluster with 10 identical nodes, each having 24 cores, an Intel(R)
Xeon(R) CPU E5–2650 v4 @ 2.20GHz and 252 GB of memory, running Ubuntu
16.04.1 LTS. Experiments with the proposed MIP model have been conducted
using Gurobi 8.1.

4.4 Computational Results

In a first series of experiments we evaluated the performance of all investigated
methods on the instance set which contains 20 small randomly generated in-
stances. To give the MIP approach sufficient time to prove optimal solutions,
we set the time limit for all experiments to 1 hour. The simulated annealing
algorithm was run under the same time limit with each of the three parameter
configurations (C1, C2, C3) on the instances. We performed 10 repeated runs
with every configuration on each instance, and used the median objective value
from the 10 runs to compare the final results between the different methods.

Table 3 gives an overview of the experimental results with the small in-
stance set. The first row of the table shows the number of instances where
the evaluated methods could produce feasible solutions within the time limit,
whereas the second row counts the number of overall best upper bounds
achieved by each method. Finally, the third row displays the number of opti-
mal solutions found. We can see that all methods were able to produce feasible
solutions for every instance. The exact approach using the Gurobi solver pro-
duced the best results for the majority of the instances, followed by simulated
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annealing with the manually tuned and automatically tuned parameter config-
urations. Gurobi was able to prove optimal solutions for four of the instances,
while simulated annealing was able to reach one optimal solution.

Gurobi SA C1 SA C2 SA C3

# solved 20 20 20 20
# best 13 3 4 0
# optimal 4 0 1 1

Table 3: Summarized results for the experiments with the set of smaller in-
stances. The rows of the table display, from top to bottom, the number of
feasible solutions found, the number of best upper bounds produced, and the
number of optimal solutions achieved by each method.

Detailed results for experiments with the small instances are visualized
in Figure 4. In addition to the achieved results by Gurobi and the simulated
annealing approach the figure also displays the best lower bounds found by the
mixed integer programming approach. All objective values are shown relative
to the overall best found objective value, and therefore costs of 1 denote the
overall best found solution costs (results with a lower bound value of 1 denote
proven optimal solutions).
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Fig. 4: A visualization of the experimental results for the 20 small instances.
The horizontal axis represents the 20 evaluated instances, whereas the vertical
axis measures the achieved relative objective values (solution cost produced
by each method divided by the overall best found solution cost).

We can see that for the majority of the instances, the exact approach
produces the best results. The simulated annealing approach produces similar
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outcomes with all three evaluated parameter configurations, however the best
results are produced with the manually tuned parameter configuration for the
set of smaller instances in a few cases. Compared to the exact method, the
simulated annealing algorithm can provide a similar solution quality on the
majority of the instances, except for instances 5, 7, 8, 13, and 15, where Gurobi
is able to produce the best results.

Figure 5 further visualizes the summarized results as box plots. We can
see that Gurobi produces the overall best results for the set of small instances.
All three parameter configurations for simulated annealing give similar results,
with configurations C2 and C3 producing slightly better results than configu-
ration C1.

Fig. 5: Box plots comparing the overall results achieved on the set of small
instances. The vertical axis measures the achieved relative objective values
(solution cost produced by each method divided by the overall best found
solution cost).

In a second series of experiments we evaluated the performance of the
proposed methods on the instance set which contains 986 large randomly gen-
erated instances. Similar as with the first series of experiments we conducted
10 repeated runs for each simulated annealing parameter configuration per
instance and used the median objective value to compare the results between
the evaluated methods. We used a five minute time limit for the set of larger
instances.

The results for the experiments with the set of large instances are sum-
marized in Table 4. Similar as in Table 3, the first row of the table shows the
number of instances where a feasible solution could be found, the second row
counts the number of best upper bounds found by each method, and the third
row displays the number of proven optimal solutions.

281

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I



Johannes Vass et al.

Gurobi SA C1 SA C2 SA C3

# solved 30 927 936 939
# best 3 758 95 95
# optimal 0 0 0 0

Table 4: Summarized results for the experiments with the set of larger in-
stances. The rows of the table display, from top to bottom, the number of
feasible solutions found, the number of best upper bounds produced, and the
number of optimal solutions achieved by each method.

The results show that no approach is able to produce feasible solutions for
all 986 instances within the time limit3. The exact method using Gurobi could
only obtain 30 feasible solutions and three best upper bounds, whereas the
simulated annealing approach is able to solve the large majority of instances
in our experiments. We can see that simulated annealing with parameter con-
figurations C2 and C3 was able to obtain slightly larger number of feasible
solutions as C1. However, most best solutions was produced using parameter
configuration C1. No optimality proofs could be achieved within the given
time limits.

Figure 6 visually compares the produced solution qualities achieved by sim-
ulated annealing with parameter configurations C1, C2 and C3 for the instances
that could be solved by all three configurations. One can see that overall that
the automatically tuned algorithm configuration C1 overall produces the best
results in our experiments whereas configurations C2 and C3 produce solutions
of similar quality.

In summary, our experiments show that the exact approach obtains the
best results for most of the small instances. However, in experiments with the
larger instances the integer programming solver turned out to be not com-
petitive compared to the simulated annealing approach. Overall, the three
evaluated parameter configurations for simulated annealing produced a very
similar number of feasible solutions, but the automatically tuned configura-
tion that only uses the swap and split neighborhood operators produced the
best results for the majority of the larger instances. However, we observe that
configurations which make use of all four investigated neighborhood opera-
tors produced slightly better results on the set of smaller instances in our
experiments.

5 Conclusion

In this paper we have investigated an extended problem formulation of the
PLP that allows production orders to be split during the planning process
and additionally considers the resource constraints. We provided a detailed
formal specification of the extended production leveling problem and further

3 There is no guarantee, though, that every instance actually has a feasible solution.
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Fig. 6: Box plots comparing the overall results achieved with the simulated
annealing approach on the set of larger instances. The vertical axis measures
the achieved relative objective values (solution cost produced by each method
divided by the overall best found solution cost). Note that some outliers have
been excluded for an improved visual comparison.

proposed a mixed integer programming formulation that can be used to ap-
proach the problem with state-of-the-art solver technology. Additionally, we
described a metaheuristic approach using simulated annealing that can be
used to tackle realistically sized problem instances and investigated several
local search neighborhood relations for the problem.

We empirically evaluated all proposed methods by performing experiments
using a large number of instances that have been randomly generated by an
instance generation routine that we proposed in this paper. Experimental re-
sults show that the exact approach using integer programming formulation
was able to prove optimal results on several of the considered smaller in-
stances and overall produced the best results for the experiments with small
sized instances. However, results obtained by experiments with larger problem
instances revealed that the exact approach was not competitive compared to
the evaluated metaheuristics on realistically sized instances in our experiments.
The simulated annealing based approach finds feasible solutions for most of
the instances within a reasonable time limit and can be used to solve instances
of realistic size. Based on the configuration provided by the automated param-
eter tuner SMAC, we can conclude that the most important neighborhoods
are the swap partitions and split moves.

In future work, we plan to investigate an approach that hybridizes the
proposed exact and metaheuristic techniques within the framework of large
neighborhood search.
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A constructive matheuristic approach for the vertex
colouring problem
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Abstract The vertex colouring problem is one of the most widely studied
and popular problems in graph theory. In light of the recent interest in hybrid
methods involving mathematical programming, this paper presents an attempt
to design a matheuristic approach for the problem. A decomposition-based
approach is introduced which utilizes an integer programming formulation to
solve subproblems to optimality. A detailed study of two different decompo-
sition strategies, vertex-based and colour-based, is discussed. In addition, the
impact of algorithm design parameters on the particular decompositions used
and their influence on final solution quality is also explored.

Keywords Vertex colouring · matheuristic · decomposition

1 Introduction

The vertex colouring problem (VCP) seeks to assign colours to vertices of a
graph such that no two adjacent vertices are assigned the same colour. Initially
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studied as a problem on planar graphs, the problem has been generalized over
general graphs and represents a large share of the graph theory literature given
its widespread applications. Problems which can be modeled as the assignment
of conflicting elements of a set to distinct subsets such as scheduling (Leighton,
1979), timetabling (Babaei, Karimpour, and Hadidi, 2015), frequency assign-
ment (Aardal, Van Hoesel, Koster, Mannino, and Sassano, 2007) and register
allocation (Chow and Hennessy, 1990), are some of the major areas where
there exist practical applications of the VCP.

The VCP is an example of a problem which is easy to define, yet difficult to
solve. Determining the smallest number of colours required to colour a graph
is an NP-hard problem (Garey and Johnson, 1979). This inherent difficulty
of the problem means that only certain kinds of graph are capable of being
solved by the best mathematical models formulated for the VCP (Méndez-
Dı́az and Zabala (2006), Méndez-Dı́az and Zabala (2008), Malaguti, Monaci,
and Toth (2011)), thereby motivating the need for efficient heuristic strate-
gies. Decades of research have contributed multiple models and performance
guarantees for the VCP. Despite these achievements, the problem continues
to fascinate researchers in this area due to its theoretical complexity and the
constantly growing number of practical applications that demand colouring
larger graphs.

Malaguti and Toth (2010) provide a useful survey on the various exact and
heuristic algorithms developed for the VCP. Several high performing algo-
rithms for the VCP such as Malaguti, Monaci, and Toth (2008), Funabiki and
Higashino (2000), Galinier and Hao (1999) suggest that hybrid methods are ef-
ficient in colouring some of the very large random graphs. This paper presents
some preliminary experiments conducted in order to test a matheuristic ap-
proach for the VCP. Matheuristics are methods which hybridize mathemati-
cal programming and heuristics. The recent success of matheuristic strategies
in scheduling applications which are, at their most fundamental level, graph
colouring problems has motivated this study.

The outline of the paper is as follows. Section 2 briefly introduces the
problem and the terminology. The matheuristic strategy proposed for the VCP
is introduced in Section 3, while the related experiments are summarized in
Section 4. Section 5 then ends this paper by concluding and offering future
research possibilities.

2 The vertex colouring problem

Let G = (V,E) denote a graph on a finite vertex set V and edge set E, whose
cardinalities are denoted by n and m respectively. In this paper, E is assumed
to be the collection of unordered pairs E = {{v, v′}|v, v′ ∈ V, v 6= v′}, thereby
limiting the problem to finite simple graphs (no loops or multiple edges). A
k-colouring of G is the assignment of k colours to elements of V such that
no two adjacent vertices share the same colour. The smallest k for which a
k-colouring exists for G is defined to be the chromatic number of G, denoted
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by χG. The saturation degree of a vertex is defined as the number of colours
to which it is adjacent.

3 Constructive Matheuristics

The present work applies a decomposition-based approach which utilizes pow-
erful exact techniques to solve subproblems to optimality and thus can be
called a matheuristic (Maniezzo, Stützle, and Voß, 2010). More specifically,
this approach adapts the constructive matheuristic (CMH) strategy introduced
by Smet, Wauters, Mihaylov, and Vanden Berghe (2014). This constructive
heuristic sequentially solves subproblems and utilizes these optimal solutions
to construct a solution for the entire original problem. The subproblems of a
CMH strategy are called blocks.

The following CMH design parameters introduced in Chandrasekharan,
Toffolo, and Wauters (2019) are also tested.

1. Block size (η): This parameter defines the size of subproblems and often
significantly influences algorithmic runtime.

2. Overlap (θ): This parameter allows blocks to share some constraints in-
stead of being completely disjoint. θ denotes the extent of overlap between
consecutive blocks.

3. Relaxed future (ρ): This feature allows the CMH to have larger subprob-
lems by solving a part of the block in a relaxed fashion, which tends to
have less of an impact on algorithmic runtime than increasing block size.
The size of the relaxed part is expressed as percentage (ρ) of the size of
the original block. The relaxed part must be later solved again with the
original formulation to ensure feasibility.

A CMH configuration is therefore represented by the three tuple (η, θ, ρ). Fig-
ure 1 illustrates the overall CMH strategy utilized in this paper and the design
parameters. The CMH approach utilized relaxes one or more constraints of an
IP formulation for the VCP in order to define the decomposition. The sub-
problems generated are then sequentially solved by a MIP solver. Depending
on the solutions of previously solved subproblems, additional constraints may
need to be added to the blocks or objective functions utilized in the blocks
modified to ensure feasibility of the final solution. Given a block b, its defini-
tion and the precise optimization problem it solves is realized by means of its
block objective function Zb(η, θ, ρ).

The CMH strategy utilizes the simple assignment-based IP formulation
(VCP-ASS) of the VCP. Let H denote the set of colours. The algorithm starts
with a total of n colours, |H| = n. Variables xih decide whether colour h is
assigned to vertex i while variables yh decide whether colour h ∈ H is utilized
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previous block

current block η

θ

ρ

Fig. 1: An overview of the general CMH strategy. Blue rectangles represent
subproblems (blocks) in the CMH strategy and the solid window represents
current block. The gray rectangle represents the block previously solved and
the dotted rectangle represents the part of a future unsolved block solved in a
relaxed fashion.

or not.

xih =

{
1 if vertex i ∈ V is assigned to colour h ∈ H
0 otherwise

(1)

yh =

{
1 if colour h ∈ H is used

0 otherwise
(2)

The model can then be formulated as follows:

minimize:

n∑
h=1

yh (3)

subject to:
n∑
h=1

xih = 1 ∀i ∈ V (4)

xih + xjh ≤ yh ∀(i, j) ∈ E, h = 1, . . . , n (5)

yh+1 ≤ yh ∀i = 0, . . . , n− 1 (6)

xih ∈ {0, 1} ∀i ∈ V, h = 1, . . . , n (7)

yh ∈ {0, 1} ∀h = 1, . . . , n (8)

Constraints 4 ensure that vertices are assigned exactly one colour, while Con-
straints 5 prevent adjacent vertices from being assigned the same colour. Con-
straints 6 are introduced to break the symmetry incurred by the interchange-
ability of colours.

The aim is to develop a CMH algorithm for the VCP inspired by the recent
success of CMH techniques for task scheduling problems, as discussed in both
Smet et al. (2014) and Chandrasekharan, Smet, and Wauters (2020). The CMH
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strategy aims to optimally colour subgraphs of G in a sequential fashion by
utilizing their MIP formulations, and then eventually combining them together
into a solution for the entire graph. The two obvious candidates for how to
decompose a graph led to the development of two decomposition strategies:
vertex-based and colour-based CMH strategies.

3.1 Vertex-based CMH

The vertex-based CMH (VBC) defines blocks by way of groups of vertices.
The induced subgraph defined by a block is coloured to optimality by utilizing
its MIP formulation. Once a block is solved, the colour assignments are fixed
and the following blocks are solved such that they do not contradict previously
fixed colour assignments. Let bk denote the current block and Ebk denote the
induced subgraph corresponding to the vertices belonging to blocks b0, . . . , bk.
The MIP formulation solved in block bk can now be formulated as follows.

xih =

{
1 if vertex i ∈ bk is assigned to colour h ∈ H
0 otherwise

(9)

yh =

{
1 if colour h ∈ H is used

0 otherwise
(10)

minimize:
n∑
h=1

yh (11)

subject to:
n∑
h=1

xih = 1 ∀i ∈ bk (12)

xih + xjh ≤ yh ∀(i, j) ∈ Ebk , h = 1, . . . , n (13)

yh+1 ≤ yh ∀h = 0, . . . , n− 1 (14)

xih ∈ {0, 1} ∀i ∈ bk, h = 1, . . . , n (15)

yh ∈ {0, 1} ∀h = 1, . . . , n (16)

3.2 Colour-based CMH

The colour-based CMH (CBC) defines blocks by means of grouping colours.
In each block of colours, the CMH solves for the maximal subgraph that can
be coloured by the colours in the block and fixes those assignments. The CMH
stops when all vertices have been coloured. In contrast with the vertex-based
CMH, the block objective function of the CBC maximizes the number of ver-
tices that can be coloured by the colours in a given block. The following is the
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(a) Vertex-based CMH (b) Colour-based CMH

Fig. 2: The CBC and VBC strategies. Solid rectangles represent blocks. Gray
windows correspond to blocks previously solved, while the dotted rectangles
represent the relaxed future part of the current block.

MIP formulation solved in each block bk:

xih =

{
1 if vertex i ∈ V is assigned to colour h ∈ bk
0 otherwise

(17)

yh =

{
1 if colour h ∈ bk is used

0 otherwise
(18)

The model can then be formulated as:

maximize:
∑
h∈bk

∑
i∈V

xih (19)

subject to: xih + xjh ≤ yh ∀(i, j) ∈ E, h ∈ bk (20)

yh+1 ≤ yh ∀h ∈ {bk0 , . . . , bk|bk|−1
} (21)

xih ∈ {0, 1} ∀i ∈ V, h ∈ bk (22)

yh ∈ {0, 1} ∀h ∈ bk (23)

The final block is re-optimized with the original objective of minimizing the
number of colours. Figure 2 illustrates CBC and VBC strategies.

The proposed CMH strategy falls in the category of successive augmenta-
tion techniques discussed in Johnson, Aragon, McGeoch, and Schevon (1991).
Such techniques begin with a feasible partial colouring of the graph and then
progressively extend it, examples of which include greedy colouring heuristics
such as DSATUR (Brélaz, 1979) and recursive largest first or RLF (Leighton,
1979). DSATUR colours vertices one by one whereas RLF iteratively construct
colour classes - groups of vertices that can be coloured by the same colour.
The general CMH strategy employed in this paper can be interpreted as a gen-
eralization of these classical colouring heuristics. Rather than colouring single
vertices or isolating a single colour class, vertex-based CMH optimally colours
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subgraphs whereas the colour-based CMH isolates a block of colour classes by
solving for it mathematically. It is worth noting that in case of the colour-
based CMH, subproblems are attempting to generate maximal independent
sets mathematically and therefore might require very long computation times
for certain graph classes, as opposed to RLF where it is done heuristically.

Johnson et al. (1991) and Matula, Marble, and Isaacson (1972) studied the
influence of the order in which vertices are coloured on final solution quality.
Some heuristics utilize a fixed static ordering of vertices, whereas some change
this ordering dynamically as the algorithm proceeds. Among static colourings,
it is proven that the smallest last (SL) ordering yields the best performance
when implemented in a greedy colouring heuristic that colours one vertex
at a time. The random vertex-based CMH (RVC) is produced by adapting a
random order for colouring vertices in the vertex-based CMH. On adapting the
adapting the SL ordering, the SL-based CMH (SLC) is produced. In addition,
another approach called the DSATUR-SL based CMH (DSC) is designed to
utilize a dynamic ordering as in the DSATUR heuristic. In this CMH approach,
the first block is composed of η vertices from the SL ordering. Once this block
is solved, elements of the next block are selected such that it composed of
uncoloured vertices with the first η largest saturation degrees in the partially
coloured graph. Ties are broken utilizing the SL order.

4 Computational Study

Experiments are conducted on four threads of an Intel(R) Xeon(R) CPU E5-
2650 v2 @ 2.60GHz computer running Ubuntu 16.04.2 LTS. The CMH algo-
rithm was coded in Java and used Gurobi 8.1 to solve blocks. The DIMACS10
vertex-colouring benchmark instances were utilized in the computational study
and are available at http://www.cc.gatech.edu/dimacs10/. The benchmark
time limit is considered to be 3600s.

From Table 1 it is clear that VCP-ASS, being the IP formulation, is capable
of solving only 48 instances of the 131 benchmark instances. When the number
of vertices is above 500, the method fails or exhibits poor performance, some-
thing which, again, justifies the need for powerful heuristics. The performance
of CBC and RVC for η = 1 are also summarized for comparison purposes.
Since RVC utilizes a random order of vertices, the results are averaged over
10 runs. Here, one colour or one vertex is considered per block. If the runtime
exceeds the benchmark time limit, the program outputs the number of vertices
(n) as the result. %Gap is calculated with respect to the best known solution
available in the literature for a particular instance. In order to develop an ef-
ficient CMH for the VCP, the impact of CMH design parameters η and θ on
all its variants have been tested.
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Table 1: Performance comparison of baseline algorithms VCP-ASS, CBC and
RVC

VCP-ASS RVC(1,0,0) CBC(1,0,0)
Number of feasible solutions 74 104 116
Number of best known solutions 48 35 45
Average calculation time(s) 2718.36 917.08 569.17
%Gap - average 3100.82 1103.59 521.17

4.1 Colour-based CMH

From Table 1 it is evident that for η = 1, CBC has a better performance
compared to that of the RVC. In general, larger block size is expected to
result in higher solution quality, but also lead to longer runtimes. However,
decreasing the block size too much may lead to too many sub problems and
longer overall set up times. See Table 2 for a summary of the results obtained
by CBC. From the performance of CBC, it is clear that larger block sizes
lead to longer runtimes but this does not correspond to improved solution
quality trends. This can be attributed to the fact that the algorithm might
terminate due to the runtime limit being exceeded for larger block sizes, which
contributes highly to the average %gap. This becomes more evident with the
%gap calculated exclusively for the feasible solutions.

For CBC, the block objective function tries to solve for the largest subgraph
that can be coloured by the elements of the block. The underlying problem
therefore seeks to isolate independent sets in the graph, which can be an NP
hard problem. Since increasing the block size beyond η = 8 may lead to very
long algorithm runtimes, increasing block size further will probably not im-
prove CMH performance. This motivates testing the impact of the overlap
design parameter on the CBC. Surprisingly, overlap feature has a negative
effect on CBC’s performance. Both average algorithm runtime and %gap in-
crease when the overlap feature is introduced. However, when only feasible
solutions are considered there is an improvement concerning the average gap,
indicating that the overlap feature need not necessarily have a negative impact
on CBC’s solution quality and this instead may be attributed to the premature
termination of the algorithm due to the runtime limit being exceeded.

Table 2: Summary of performance details of colour-based CMH strategies

Configuration Average
runtime

Average
%gap

#feasible
solutions

#optimal
solutions

Average
%gap(only

feasible
solutions)

”CBC(1,0,0)” 569.17 521.17 116 45 52.41
”CBC(4,0,0)” 1,694.07 2,806.29 72 41 63.77
”CBC(8,0,0)” 1,839.26 1,247.49 86 51 57.85

”CBC(4,50,0)” 2,129.31 3,490.89 52 14 48.79
”CBC(8,50,0)” 1,842.23 2,102.66 65 20 39.46
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4.2 Vertex-based CMH

The performance of various vertex-based approaches is summarized in Table
3. In case of RVC, performance trends are rather irregular, with RVC(20,0,0)
exhibiting the best performance when θ = 0. In contrast to that of CBC,
it is evident that overlap feature can be employed in the RVC to produce
more feasible solutions. The overall average gap still remains high whereas the
average gap calculated only over the feasible solutions decreases. This could
be due to the large RVC runtimes as a result of implementing overlap. In case
of exceeding runtime limit, the CMH terminates and returns the number of
vertices (n) as the result. Therefore, a subset S of 95 instances on which all
vertex-based CMH strategies produce feasible solutions has been constructed
in order to make a fair comparison between their performances.

Table 3: Summary of performance details of various vertex-based CMH strate-
gies

Configuration Average
runtime

Average
%gap

#feasible
solutions

#optimal
solutions

Average
%gap(only

feasible
solutions)

Average
%gap(over

S)

”RVC(1,0,0)” 917.08 1,103.59 104 35 34.45 35.41
”RVC(10,0,0)” 797.95 1,029.42 109 31 34.68 35.65
”RVC(20,0,0)” 767.18 1,142.73 107 38 34.02 34.35

”RVC(10,50,0)” 954.28 1,105.3 104 38 36.6 36.95
”RVC(20,50,0)” 913.79 1,103.09 104 37 33.82 34.8

”SLC(1,0,0)” 973.73 595.88 108 49 27.18 26.47
”SLC(10,0,0)” 703.43 879.43 112 60 23.04 23.29
”SLC(20,0,0)” 669.67 878.55 112 55 22.02 22.26

”SLC(10,50,0)” 899.41 1,250.6 106 58 21.41 22
”SLC(20,50,0)” 838.19 1,054.18 108 61 19.66 20.8

”DSC(1,0,0)” 1,204.19 2,148.55 95 48 26.14 26.14
”DSC(10,0,0)” 831.33 1,208.23 109 55 22.24 22.8
”DSC(20,0,0)” 762.19 1,207.75 109 60 21.67 21.98

”DSC(10,50,0)” 992.31 1,539.85 102 56 16.33 16.68
”DSC(20,50,0)” 928.37 1,489.96 105 56 17.07 17.64

Sequential colouring (SC) refers to greedy strategies which colours vertices
of a graph one by one. It is proven that there exists an order which, when uti-
lized by the SC, results in an optimal colouring. Matula et al. (1972) presents
an in depth study of the influence of the order in which vertices are coloured
in a SC heuristic. This work introduced the SL ordering and proved that when
utilized by the SC, this order guarantees the max-subgraph-min-degree bound
given by

χ(G) ≤ 1 + maxH:subgraph of G minv∈H{degH(v)}
Note that the configuration (1, 0, 0) of vertex-based CMH corresponds to a
SC heuristic and guarantees this bound when one uses SL ordering. The im-
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provement of RVC solution quality with larger block sizes and when applying
the overlap feature motivates similar experiments using SL-ordering in the
vertex-based CMH, resulting in the SL-CMH or SLC.

Figure 3 compares the vertex-based CMH performance with respect to
design parameters η and θ. These experiments are based on the performance
on the insances from set S. It is clear that utilizing SL ordering in the vertex-
based CMH is an improvement over the RVC. The figure 3 also shows how
increasing the block size improves solution quality. However, it must be noted
that very large blocks lead to very long runtimes and hence the number of
optimal solutions decreases for η = 20. Thus it is not feasible to increase
block size further to improve SLC’s performance. Overlap experiments show
that this feature improve the overall performance of SLC. While it is clear
that the algorithm generates high quality solutions, overlap also increases the
algorithm runtime, thereby leading to the termination of the program before it
generates a solution. This results in fewer feasible and optimal solutions and
larger average %gaps compared to the results of SLC implemented without
overlap.

From these experiments it is clear that while overlap can improve the
CMH solution quality, its influence on algorithm runtime makes the overall
CMH strategy rather inefficient. However, it is worth noting that, for overlap
to be able to handle constraints linking blocks more effectively, it requires
vertices which share Constraints 5 to be present in consecutive blocks. This
idea motivates utilizing the DSATUR-based dynamic ordering in the CMH
strategy, resulting in the DSC. While using DSATUR may not lead to solution
quality improvements, it may exhibit better performance when employed with
non-zero overlap.

Similar to all other CMH strategies discussed, the solution quality of DSC
also improves upon increasing block size, as is evident from Figure 3 and
Table 3. Note that concerning experiments without overlap, the SLC exhibits
the best overall performance. Table 3 also presents the results of DSC when
implemented with overlap θ = 50. Out of all the CMH strategies presented
in the paper, DSC when implemented with overlap leads to the lowest %gap
computed over the feasible solutions, indicating its ability to generate high
quality solutions for the VCP. However, algorithm runtime also increases while
adding overlap feature and affects algorithms overall efficiency. SLC exhibits
the lowest impact on algorithm runtime when implementing overlap.

To further improve the method, an upper bound for the chromatic number
is utilized to reduce the size of the formulation. This is done by executing a
simple greedy coloring heuristic that colors vertices one after the other based
on the SL ordering. Moreover, using the number of vertices(n) as the algo-
rithm output on reaching timelimit contribute a disproportionately high value
towards the average gap, making it an inefficient measure to study CMH per-
formance with respect to other best performing algorithms. The SLC and DSC
algorithms after implementing this modification is renamed as SLC’ and DSC’
respectively and their performance on the difficult VCP instances is presented
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in Table 4 along with that of the other best performing heuristics for compar-
ison.
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Fig. 3: Performance comparison of various vertex-based CMH approaches
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5 Results and Discussion

The present paper presents preliminary research conducted in order to design
an efficient constructive matheuristic (CMH) strategy for the vertex colouring
problem. The primary insight gained from this work is that it is possible to
extend subproblems of successive augmentation techniques and employ simple
integer programming approaches to arrive at high quality solutions. This, in
turn, becomes a way of designing a CMH. Experiments show that algorithm
design parameters such as overlap can be effectively utilized to improve the
solution quality. The major challenge, however, is the very high impact of such
features on algorithmic runtime. Previous research has shown that identifying
smarter decomposition strategies and introducing components that better nav-
igate the CMH may overcome this drawback. Therefore, future research will
explore decomposition strategies for CMH and study their suitability when
implemented alongside CMH design parameters.
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